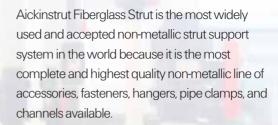


Fiberglass Framing System Product Catalog



- Non-Metallic Channel Framing
 System & Accessories
- Hangers, Fasteners, Clamps, & Pipe Supports
- Instrument & Pipe Stands
- Custom Fabrication

Aickinstrut framing products for your non-metallic infrastructure applications

Aickinstrut is a versatile, high-strength product that has been successfully used in thousands of applications world-wide. Some of those applications include: chemical plants, waste water treatment, refineries, marinas, pulp and paper, desalination facilities, theme parks, aquariums, and underground vaults.

Made from entirely nonmetallic, corrosion resistant resins, Aickinstrut can be used in demanding environments where steel strut systems may not be compatible.

Its lightweight components can be installed quickly and easily using standard tools.

All Aickinstrut parts incorporate the highest quality materials to provide superior chemical resistance, flame resistance, strength, and ultraviolet protection.

Because Aickinstrut manufactures a complete corrosion resistant strut support system, Aickinstrut is the only single source for all non-metallic support systems requirements.

Aickinstrut stands ready to provide assistance through its network of distributors and sales representatives.

AICKINSTRUT SYSTEM		AICKINSTRUT SYSTEM (cont.)	
Introduction	2	Instrument & Pipe Stands	
		Heavy Duty Post Base	31
Technical Information		Instrument & Pipe Stands	
Fabrication	1	non arrow a ripe otariao illinininininininininininininininininin	
Materials			
Temperature Ranges		AICKINSHAPE	
,			<u>.</u>
Typical Properties		Introduction	32
Aickinstrut Specifications			
Chemical Resistance	8-9	Structural Shapes	
			22.25
Channel Framing		Structural Shapes	32–35
Channel Framing	10		
Concrete Embedment Channel		Sealers and Coatings	
SST Channel	10	Aickinzap	36
Channel Profiles		Aickincoat	
Channel Loading			
		Custom Fabrications and	
Channel Framing Accessories			
Channel Fittings	16-18	Promotional Material	
Post Bases		Aickin Distributor Display	36
		Aickin Sample Box	37
Channel Spacers		Aickin Adjustable Pipe Clamp Sample	37
Channel Capping Strip		Aickin Rigid Pipe Clamp Sample	37
Channel End Cap	19	Aickin Distributor Literature Display	
Pipe Clamps		ALOVINODATE	
Aickinclamps Adjustable Pipe Clamps	20	AICKINGRATE	
Rigid Pipe Clamps	21	Introduction	20
Two-Hole Pipe Straps	21	Introduction	30
Aickin-A-Grip			
Channel Caps & Spacers		Molded Grating	
U-Bolts		Specifications	39
		Molded Grating	
Fraterin		Grating Size	40
Fasteners		Loads & Deffiection	
Fiberfast Bolts			
Vinyl Ester Square Head Bolts		Pultruded Grating	
Fiberfast Hex Nuts			4.0
Vinyl Ester Square Nuts	25	Introduction	
Flat Washers	25	Specifications	
Channel Nuts	26	"I" Bar Pultruded Grating Load & Deffiection	
Saddle Clips	26	"T" Bar Pultruded Grating Load & Deffiection	
Stop-Lock Assemblies	26	Wide "T" Bar Load & Deffiection	50-51
		Aickingrate Tables	
Pipe Hangers		Part Numbers	52
Clevis Hangers	27		
Olovio Flarigoro	······	Aickingrate Accessories	
Dina Hansing Assessation		Stair Treads	53
Pipe Hanging Accessories		Aickinplate Floor Plate	
Beam Clamps			
Beam Clamp Clips		Sealers	
Threaded Rod		Grating Accessories	
A-Konnector Rod Couplers	29	Corrosion Resistance Guide	56
Duraclamp C-Clamps	29		
Channel Hanger	29	Index	
		Aickinstrut/Aickinshape/Aickingrate	
Pipe Supports		Part Number Index	57
Power-Racks Stanchions	20	Other Fiberglass Products	
Wall Bracket		AEG Line Card	
vvaii DidCKet	30		

AICKINSTRUT FABRICATION

The installation of fiberglass channel and accessories is similar to the installation of metallic channel and accessories. All standard installation practices and procedures apply. In general, special handling is not required. Fabrication of Aickinstrut components requires just three simple operations; cutting, drilling and sealing as described below.

Cutting – Cutting can be accomplished with a wide variety of saws. Hand held saws, such as hack saws (24 to 32 teeth per inch) are suitable when a few number of cuts are required. For frequent cutting, a circular power saw with a carbide-tipped masonry blade yields the best results and the greatest number of cuts. When using a power saw, dust filter masks, gloves and long sleeve clothing should be worn.

Drilling – Any standard twist bit, even when used with battery-powered drills will work well. Carbide-tipped drill bits are recommended.

Sealing – To protect against future migration of corrosive elements into the cut sections, all cuts and holes should be properly sealed using Aickincoat or Aickinzap.

LABOR SAVINGS

Aickinstrut fiberglass structural members can be cut and drilled at a much faster rate than steel. Typically, fiberglass can be fabricated in less than half the time. As a result, substantial labor savings will be realized. Also, Aickinstrut products average ½ the weight of their steel counterparts, making them much easier to handle on the job site.

RELATIVE MATERIAL COSTS

Aickinstrut materials are advantageously priced relative to specialty metals traditionally used in corrosive environments. Aickinstrut, even though slightly more expensive than pre-galvanized channel, can be used with the knowledge that it will not have to be maintained regularly or replaced after a brief time. Should pre-galvanized channel have to be replaced once, its cost far outweighs the expense of doing the initial installation with Aickinstrut.

MATERIAL

The finished Aickinstrut application will utilize a combination of materials from the following resin families:

Material Code	Material
Е	PVC (extruded)
Р	Polyester (pultruded)
V	Vinyl ester (pultruded)
PU	Polyurethane (injection molded)
PP	Polypropylene (injection molded)
N	Nylon (injection molded)

The ability of each material to handle high and low temperatures, chemical exposures and static loads is covered in each of the following sections. By using these criteria, you will be able to select the optimal Aickinstrut Channel, Fittings and Accessories for your particular applications.

OPERATING ENVIRONMENT

In order to design an Aickinstrut system for your application, consideration should be given to the maximum operating conditions. These "worst case" conditions will determine which type of Aickinstrut materials are best suited for your application. The three "worst case" operating conditions to consider are:

- Temperature
- Chemical Environment
- Loading

Temperature Ranges – Aickinstrut is supplied in six different materials covering distinct temperature ranges. Materials should be chosen which meet or exceed the minimum and maximum temperatures for your applications.

Material Code	Low Temperature	High Temperature
Е	-25°F	130°F
Р	-35°F	200°F
V	-35°F	200°F
PU	-40°F	140°F
PP	-30°F	150°F
N	-20°F	150°F

The temperature ranges indicated are meant to be used only as a general guideline. Continual exposure to elevated temperatures reduces the strength properties of plastics and glass reinforced fiberglass. Actual resin test data confirms that a 50% reduction in strength occurs at the extreme high temperature levels.

Chemical Resistance – Each resin family has its own specifications regarding its performance against corrosion resistance. Use the following chart to determine which Aickinstrut material system will provide the best performance for your particular application. The results in the chart are based upon immersion for a 24 hour period. This is typically the "worst case" exposure to corrosion. Less severe contact such as spills, splashes and vapor condensate will exceed the performance results listed in the table.

Loading – Channel loading is defined on pages 13 to 15.Additional loading and design limitations for fittings and accessories are described in the appropriate section for that part.

THE PULTRUSION PROCESS

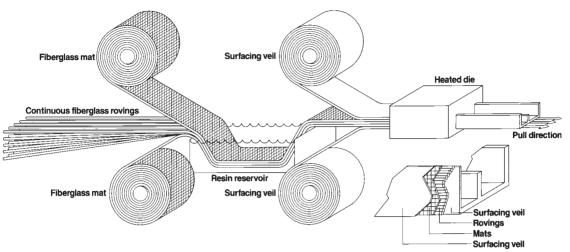
The pultruded structural component is made by reinforcing a polymer resin (usually polyester or vinyl ester resin) with multiple strands of glass filament and alternating layers of glass mat.

The glass is drawn through the liquid resin, which coats and saturates the fibers. The combination of resin and glass is then continuously guided and pulled (pultruded) through a heated die that determines the shape of the component.

In the die, the resin is cured to form a permanent, reinforced part which can be cut to a specific length. Since the hardened fiberglass pultrusion is reinforced with an internal arrangement of permanently bonded continuous glass fibers, it possesses great strength. In addition to strength, pultruded fiberglass components exhibit exceptional corrosion resistance. This attribute makes fiberglass the material of choice for many harsh industrial applications.

RESIN SYSTEMS

Polyester and vinyl ester resin systems are available. The vinyl ester resin system is somewhat stronger and is applied in severe corrosive applications.


Both resin systems are flame retardant, conforming to ASTM E84, Class 1 flame rating and are self extinguishing per the requirements of UL94V-0.

Consult the corrosion resistance guide on page 8 and 9 to determine the correct resin system for your application.

				Typical Value	Typical Value
Typical Properties	Test Method	Direction	Unit	Polyester	Vinyl Ester
Mechanical					
Ultimate Tensile Strength	ASTM D-638	Longitudinal	PSI	30,000	35,000
	ASTM D-638	Transverse	PSI	7,000	10,000
Tensile Modulus	ASTM D-638	Longitudinal	PSI	2.5 x 10 ⁶	3.0 x 10 ⁶
	ASTM D-638	Transverse	PSI	0.8 x10 ⁶	1.0 x 10 ⁶
Ultimate Compressive Strength	ASTM D-695	Longitudinal	PSI	30,000	35,000
	ASTM D-695	Transverse	PSI	15,000	20,000
Compressive Modulus	ASTM D-695	Longitudinal	PSI	2.5 x 10 ⁶	2.5 x 10 ⁶
	ASTM D-695	Transverse	PSI	1.0×10^6	1.2 x 10 ⁶
Ultimate Flexural Strength	ASTM D-790	Longitudinal	PSI	30,000	35,000
	ASTM D-790	Transverse	PSI	10,000	14,000
Flexural Modulus	ASTM D-790	Longitudinal	PSI	1.6 x 10 ⁶	2.0 x 10 ⁶
	ASTM D-790	Transverse	PSI	0.8×10^6	1.0 x 10 ⁶
Shear Strength Short Beam	ASTM D-2344	Longitudinal or	PSI	5,500	7,000
		Transverse	PSI	5,500	6,000
Impact Strength-Izod	ASTM D-256	Longitudinal	ftlb./in.	25	30
		Transverse	ftlb./in.	4	5
Hardness-Barcol	ASTM D-2583	Perpendicular		50	50
Flectrical					
Electric Strength Short Time-in oil	ASTM D-149	Perpendicular	Volts/mil.	200	200
License offength offert fillig-III off	HOTINI D-143	Parallel	KV/in.	35	35
Dielectric Constant	ASTM D-150	Perpendicular	IXV/III.	5.0	5.0
Dissipation Factor	ASTM D-150	Perpendicular		0.03	0.03
Arc Resistance	ASTM D-150 ASTM D-495	Longitudinal or	Seconds	80	120
AIL URSISIAIICE	MOTIVI D-490	Transverse	Seconds	80	120
		Hallsverse	Seconds	00	120

Technical Information

Glass Roving and Mat Reinforced Polyester and Vinyl Ester Fiberglass Components

				Typical Value	Typical Value
Typical Properties	Test Method	Direction	Unit	Polyester	Vinyl Ester
Other					
Thermal Coefficient of Expansion	ASTM D-696	Longitudinal	in./in./°F	5 x 10 ⁻⁶	5 x 10 ⁻⁶
Thermal Conductivity		Longitudinal	BTU/Hr. sq.	4.0	4.0
			ft./in./°F		
Water Absorption 24 hours	ASTM 0-570	Longitudinal	%	1	1
Density	ASTM D-792	Longitudinal	lbs./cu.in.	0.062	0.062
Color (Standard)				Dark Gray	Beige
Flammability	UL94		Classification:	V-0	V-0
Flammability	ASTME84		Rating:	25	25

The foregoing list of properties was derived from laboratory data using coupon test specimens cut from pultruded sections. Such information should only be used as a general guide in design. Many actual components (such as cable tray side rail) take advantage of the flexibility of the pultrusion process and are selectively reinforced to enhance performance in a particular load axis. The factory should be contacted for specific information on any given component.

Aickinstrut Fiberglass Threaded Rod Material Properties

Threaded rod is a proprietary combination of fiberglass and Class I vinyl ester flame retardant resin.

Properties	3/8-16 UNC	¹ /2-13 UNC	5/8-11 UNC
Thread shear strength using fiberglass nut in tensile (lbs.)	1,250	2,500	3,800
Transverse shear on threaded rod-double shear ASTM-B-565 (load lb.)	4,200	7,400	11,600
Transverse shear on threaded rodsingle shear (load lb.)	1,600	2,600	3,800
Compressive strength-longitudinal ASTM-D-695 (psi)	55,000	55,000	55,000
Flexural strength ASTM-D-790 (psi)	60,000	60,000	60,000
Flexural modulus ASTM-D-790 (psi x 10')	2.0×10^{6}	2.0×10^6	2.0×10^{6}
Torque strength using fiberglass nut lubricated with SAE IOW30 motor oil (ft./lbs.)	8	15	33
Dielectric strength ASTM-D-149 (kv/in.)	40	40	40
Water absorption 24 hour immersionthreaded ASTM-D-570 (%)	1	1	1
Coefficient of thermal expansionlongitudinal (in./in./°F)	5×10^{6}	5×10^{6}	5×10^{6}
Max recommended operation temp, based on 50% retention of ultimate			
thread shear strength (°F)	200	200	200
Stud weight (lb./ft.)	.076	.129	.209
Flammability	Self extinguishing	g per UL94V-O	

Aickinstrut Specifications

1.0 SCOPE

1.1 This specification covers the requirements for the Aickinstrut Nonmetallic Channel Framing System.

2.0 MATERIAL

- 2.1 FRP channel shall be of pultruded glass reinforced polyester or vinyl ester resin having the physical property values listed in this catalog.
- 2.2 PVC channel shall be of extruded polyvinyl chloride having the physical property values listed in this catalog.
- 2.3 Some accessories shall be of injection molded, 40% long glass fiber reinforced polyurethane, polypropylene or nylon.

3.0 COMPOSITION

- 3.1 Glass reinforced channel shall have a synthetic surfacing veil applied on exterior surfaces to improve weatherability and inhibit ultraviolet degradation. An ultraviolet stabilizer shall be incorporated in the resin formulation to further inhibit ultraviolet degradation.
- 3.2 PVC channel shall be manufactured from a U.V. stabilized resin and incorporate dark gray pigment to improve weatherability and inhibit ultraviolet degradation.

4.0 STRUCTURAL DESIGN

- 4.1 Channel shall incorporate Aickinstrut's patented flange profile design which allows full and positive interlocking contact of channel accessories and prohibits premature flange failure from torqued accessories.
- 4.2 Channel profile dimensions shall be:

4.3 All 15%" x 15%" channel profiles shall have a minimum pull out resistance of 1,000 pounds when load is applied over a 3%" long section of the inside flanges.

- 4.4 Channel section lengths shall be supplied in 10' or 20' lengths (±½").
- 4.5 Universal Pipe Clamps shall have full interlocking contact with interior channel flanges to maximize pull-out resistance and be adjustable to accommodate a minimum ¾" variance in piping or conduit O.D. sizes.

5.0 STANDARDS

- 5.1 Glass reinforced and PVC channels covered in this specification shall have a flame spread rating of 25 or less when tested per ASTM E84 and meet the requirements of UL 94V0 thereby qualifying them as Class 1 material in the Uniform Building Code.
- 5.2 Glass reinforced channels covered in this specification shall comply with the requirements of ASTM D 3917 and ASTM D 4385 which govern the dimensional tolerance and visual defects of pultruded shapes.

6.0 GENERAL

- 6.1 Aickinstrut Nonmetallic Channel Framing shall be furnished as a system which includes all the necessary fasteners, channel splice plates, brackets, sealants, hangers, pipe clamps, etc.
- 6.2 Nonmetallic fasteners shall be manufactured from long glass fiber reinforced polyurethane to ensure maximum strength and corrosion resistance.
- 6.3 All components of the Aickinstrut Channel Framing System shall be nonmetallic except where type 316 stainless steel hardware is used as part of the assembly.
- 6.4 Aickinstrut is manufactured by Aickinstrut, a subsidiary of T.J. Cope, Philadelphia, Pennsylvania, 1-800-426-4293.
- 6.5 The manufacturer shall not have had less than 10 years experience in manufacturing strut systems.
- 6.6 All products are manufactured in the United States of America.

Technical Information

Chemical Compatibility Table Series E Series P Series V Series K Series PII Series N (Rigid PVC) (Poly/Glass) (PVDF) (Polyurethane) (Vinyl/Glass) (Nylon) Chemical 70°-160°F 70°-160°F 70°-160°F 70°-160°F 70°-160°F 70°-160°F Acetic Acid. Up to 10% R R R R R R R R R NR NR Acetic Acid. Up to 50% R R R R R R R R R NR NR Acetone, Up to 10% NR NR NR NR NR NR NR NR R R R R R Aluminum Hydroxide NR NR Ammonium Hydroxide (Aqueous Ammonia), Up to 5% R R NR NR R R R R R R Ammonium Hydroxide, Up to 10% R R NR NR R 150° R R Ammonium Hydroxide, Up to 20% R R NR NR R 150° R R R Ammonium Nitrate R R R NR R R R R R NR R R Ammonium Phosphate R R R R R R R R Ammenium Sulfide, saturated R R NR NR R 120° Agua Regia, fumes NR NR NR NR R 150° R R NR Benzene NR NR NR NR NR NR NR R R R R R R R R R Benzoic Acid R R R R Bromine, wet gas R NR NR NR R 100° R R R Butylene Glycol, Up to 100% R R R R R R R R R R R Butyric Acid, Up to 50% NR NR R R R R Calcium Hydroxide R R R NR R R R R R Calcium Hypochlorite R R R NR R R R R R _ NR NR Chlorine. Drv Gas NR NR R R R R NR NR Chlorine, Wet Gas NR NR NR R R R R NR NR R Chlorine, Liquid NR NR NR NR R NR Chlorine, Water R R R R NR R R NR NR NR Chromic Acid, Up to 5% R NR R R R R NR R R R R R R R R R R Copper Chloride R R _ R R R R Copper Cyanide NR R R R R Copper Fluoride R R R NR R R R R R Copper Nitrate R R R R R R R R R R R R R Copper Sulfate R R R R **Dechlorinated Brine Storage** R R R R R Esters, Fatty Acid NR NR R R R R R R R _ _ Ferric Chloride R R R R R R R R R R R R R R Ferrous Chloride R R R Fluoboric Acid R R R 120° R R R R Fluosilicic Acid. Up to 10% NR NR NR NR R R R R NR NR Fluosilicic Acid, Up to 32% 100° NR NR NR NR R R R Formic Acid, Up to 10% R R NR NR R R R R R NR NR Formic Acid, Up to 50% R R NR NR R 100° R R R Gasoline, Aviation R NR R NR R R R R R Green Liquor, Pulp Mill R R R R R R R R R R R R Hydrochloric Acid Up to 15% R NR R Hydrochloric Acid Up to 37% R R R NR R R R R R R R Hydrofluoric Acid, Up to 10% R NR NR R 150° R _ R Hydrofluoric Acid, Up to 20% NR NR NR R 100° R Hydrogen Chloride, Wet Gas NR NR R NR R R R R NR

R R

R NR

R R

R R

R

Legend: "NR" indicates "Not Recommended" for use;

Hydrogen Sulfide, Wet Gas

[&]quot;R" indicates "Recommended":

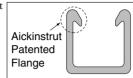
[&]quot;-" indicates no information available

	Chemical C	ompatibility	Table			
Chemical	Series E (Rigid PVC) 70°-160°F	Series P (Poly/Glass) 70°-160°F	Series V (Vinyl/Glass) 70°-160°F	Series K (PVDF) 70°-160°F	Series PU (Polyurethane) 70°-160°F	Series N (Nylon) 70°-160°F
Lactic Acid	R R	R NR	R R	R R	R –	
Lead Nitrate	R R		R R	R	R –	
Magnesium Hydroxide	R R	NR NR	R R	R R	R –	R R
Nickel Sulfate, Low pH	R R	NR NR	R R	R R	R –	
Nickel Sulfate, High pH	R R	NR NR	R R	R	R –	
Nitric Acid, Up to 5%	R R	NR NR	R 150°	R R	R –	
Nitric Acid, Up to 35%	R R	NR NR	R 150°	R R	R –	
Nitric Acid, Vapor	R R	NR NR	R R	R		
Perchloric Acid, Up to 10%	NR NR	NR NR	R 150°	R R		NR NR
Pickling Liquids, 3-5% H2S04	R R	R R	R R	R R	R –	
Phosphoric Acid	R R	NR NR	R R	R R	R –	NR NR
Phosphoric Acid, Super or Poly (115%, P20%)	R R	NR NR	R R	R R		
Phosphoric Acid Vapor or Condensate	R R	NR NR	R R	R R		
Potassium Chloride	R R	R R	R R	R R	R –	
Potassium Nitrate	R R	R R	R R	R R	R –	
Potassium Persulfate	R R	NR NR	R R	R R	R –	
Silver Cyanide, Up to 5%	R R	NR NR	R R	R R	R –	
Sodium Hydroxide, Up to 25%	R R	NR NR	R 150°	R R	R –	
Sodium Hydroxide, up to 50%	R R	NR NR	R 180°	R R		R R
Sodium Hypochlorite, Up to 15%	R R	NR NR	R 150°	R R	R –	NR NR
Sodium Nitrate	R R	R R	R R	R R	R –	
Sodium Sulfate	R R	R NR	R R	R R	R –	
Sodium Sulfide	R R	NR NR	R R	R R	R –	
Sulfuric Acid, Up to 25%	R R	R R	R R	R R	R –	NR NR
Sulfuric Acid, Up to 50%	R R	NR NR	R R	R R	R –	
Sulfuric Acid, Up to 70%	R R	NR NR	R R	R R	R –	NR NR
Sulfuric Acid, Up to 75%	NR NR	NR NR	R 120°	R R		NR NR
Sulfuric Acid, Up to 80%	NR NR	NR NR	NR NR	NR NR		NR NR
Sulfuric Acid, Vapor	R R	R NR	R R	R R		
Trichlorethylene, Fumes	NR NR	NR NR	R 120°	R R	NR -	
Trisodium Phosphate	R R	R NR	R R	R R	R –	
Urea	R R	R NR	R 150°	R R	R –	R R
Vegetable Oils	R R	R R	R R	R R	R –	R R
Vinegar	R R	R R	R R	R R	R R	R
White Liquor, Pulp Mill	R R		R R	R R		

BEAM LOADING CONVERSION TABLE

Note: The recommendations contained in this table are made without guarantee of representation as to results. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by T.J. Cope, Inc. as to effects of such use or results to be obtained nor does T.J. Cope, Inc. assume any liability arising out of the use by others of the products referenced in this table. Nor is the information herein to be construed as absolutely complete since additional information may be needed or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations. We suggest that you evaluate these recommendations and suggestions in your own laboratory prior to use. Our responsibility for claims arising from breach of warranty, negligence, or otherwise is limited to the purchase price of the material.

Legend: "NR" indicates "Not Recommended" for use;


"R" indicates "Recommended";

"-" indicates no information available

CHANNEL FRAMING

All Aickinstrut channels, except the SST series, incorporate a patented flange design which provides reliable fastening and interlocking of Aickinstrut components and accessories.

Channels are provided in

standard lengths of 10' with longer lengths available upon request. Aickinstrut single channels come packaged in boxes of 100' while the double channels are packaged in boxes containing 40'.

Aickinstrut channel is available in three materials:

- · Polyester (P material),
- · Vinvl Ester (V material) and
- PVC (E material)

Polyester and Vinyl Ester Materials

The polyester and vinyl ester channels are manufactured from the pultrusion process. In this process, the component is made by reinforcing a polymer resin (polyester or vinyl ester) with multiple strands of glass filament, alternating layers of glass mat and U.V. resistant surfacing veils. The glass is drawn through the liquid resin, which coats and saturates the fibers. The combination of resin, glass and veil is then continuously guided and pulled (pultruded) through a heated die that determines the shape of the component.

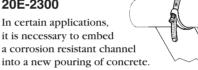
In the die, the resin is cured to form a permanent, reinforced part which can be cut to a specific length. Since the hardened fiberglass pultrusion is reinforced with and internal arrangement of permanently bonded continuous glass fibers, it possesses great strength.

In addition, pultruded fiberglass components exhibit exceptional corrosion and fire resistance. These attributes make fiberglass the material of choice for many harsh industrial applications.

The polyester and vinyl ester channels are color coded. Polyester channels are colored gray and the vinyl ester channels are colored beige.

PVC Materials

The PVC channels are manufactured from the extrusion process. In this process, the component is made by a PVC resin mixture being continuously fed through a heated die that determines the shape of the component.


In the die, the resin is cured to form a permanent, extruded part that can be cut to a specific length. Unlike pultruded components, extruded components do not incorporate glass-reinforcement; consequently, they do not exhibit the same beam strength as their pultruded counterparts. PVC components, however; exhibit exceptional corrosion and fire resistance. These features make PVC channels an excellent alternative when excessive beam strength is not required. PVC channels are color coded dark gray.

CHANNEL AVAILABILITY CHART

The following chart illustrates the availability of materials in the different channel profiles.

Channel Profile	Polyester (P)	Vinyl Ester (V)	PVC (E)
Series 2000, 2200, 230	0 X	Х	Х
Series 1500, 1700, 180	0 X	Х	N/A
Series 1000, 1200, 130	0 X	Х	Х
Series 2100	Х	Х	N/A
Series 1600	Х	Х	N/A
Series 1100	Х	Х	N/A

CONCRETE EMBEDMENT CHANNEL PART NO. – 20E-2300

For these applications, Aickinstrut

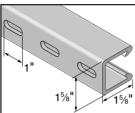
concrete embedment channel is recommended. Aickinstrut embedment channel is available in three material types; PVC, polyester and vinyl ester. The PVC embedment channel is extruded as one piece while the polyester and vinyl ester embedment channel is a two piece bonded type design. The PVC embedment channel is available in the $1\frac{5}{8}$ " and $1\frac{1}{8}$ " profiles while polyester and vinyl ester embedment channels are available in all three profiles $(1\frac{5}{8}$ ", $1\frac{1}{2}$ " & $1\frac{1}{8}$ ").

The embedment channel utilizes two continuous protruding flanges in the profile base to retain the channel in the concrete. Mounting the embedment channel flush with the concrete surface is a convenient way to secure piping, conduits or electrical enclosures to a wall or ceiling. The PVC embedment channel is extremely high in strength. When embedded in 3,000 PSI concrete, the concrete will fail before the channel is pulled out.

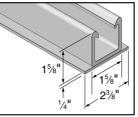
AICKINSTRUT SST CHANNEL

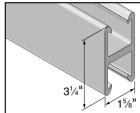
Aickinstrut SST Fiberglass Channel incorporates a standard channel profile that will accommodate metallic pipe straps and clamps. SST channel is available in polyester or vinyl ester resin. All standard styles (solid, slotted, concrete insert and back-to-back) are also available. Please contact the factory for loading information for the SST Channel.

NOTE: Aickinstrut SST Channel is not compatible with the Aickinstrut pipe clamps, channel nuts, and grooved fittings shown in this catalog. Please contact Aickinstrut for information on a complete line of compatible clamps and channel nuts.

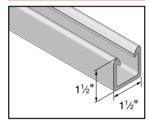

HEAVY DUTY CHANNEL - AICKINSTRUT PROFILE

Standard 20P-2000, 20V-2000, 20E-2000

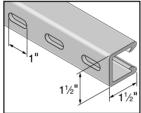

15/8"


Slotted (1" x 3/8" Holes) 20P-2200, 20V-2200, 20E-2200

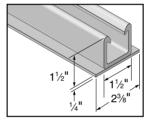
With Concrete Inserts 20P-2300, 20V-2300, 20E-2300

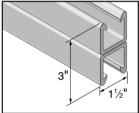


Back-to-Back 20P-2100, 20V-2100



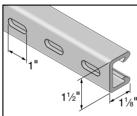
MEDIUM DUTY CHANNEL - AICKINSTRUT PROFILE


Standard 20P-1500, 20V-1500

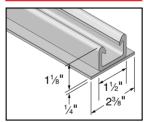

Slotted (1" x 3/8" Holes) 20P-1700, 20V-1700

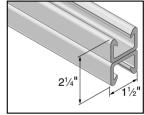
With Concrete Inserts 20P-1800, 20V-1800

Back-to-Back 20P-1600, 20V-1600

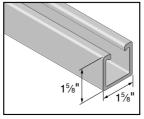


LIGHT DUTY CHANNEL - AICKINSTRUT PROFILE

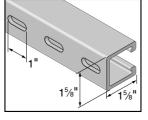

Standard 20P-1000, 20V-1000, 20E-1000


Slotted (1" x 3%" Holes) 20P-1200, 20V-1200, 20E-1200

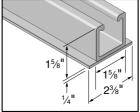
With Concrete Inserts 20P-1300, 20V-1300, 20E-1300

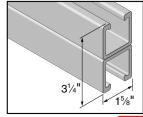


Back-to-Back 20P-1100, 20V-1100



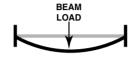
HEAVY DUTY CHANNEL – STANDARD PROFILE


Standard 20P-2000-SST, 20V-2000-SST


Slotted (1" x 3/8" Holes) 20P-2200-SST, 20V-2200-SST

With Concrete Inserts 20P-2300-SST, 20V-2300-SST

Back-to-Back 20P-2100-SST, 20V-2100-SST


CHANNEL LOADING

Channel loading generally occurs in one of the following modes:

- beam
- column
- flange

BEAM LOADING

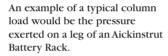
Beam loading data reflects the maximum uniform load allowed when using the channel horizontally as in a trapeze hanger. Refer to the table on Page 13 for simple beam

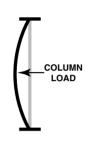
loading capacity of various channels. Use the beam loading conversion chart on page 12 to calculate loading capacity for other beam loading conditions.

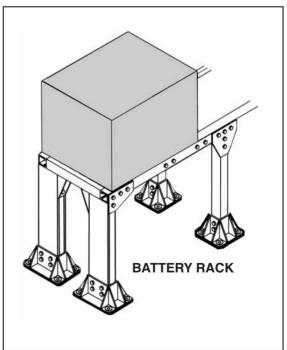
The Aickinstrut Trapeze hanger is an example of beam loading. To calculate the maximum allowable beam load for an Aickinstrut Trapeze hanger:

- 1. Measure the distance between the two threaded rod supports.
- 2. Using the length of the section hanger as the "beam", refer to the appropriate profile size in the Beam Load ing Chart to determine whether the deflection meets your requirements.

BEAM LOADING - PVC


The data listed in the Beam Loading Chart reflects testing conducted on Polyester (Type P) and vinyl ester (Type V) channels. PVC (Type E) material will differ from the Polyester/Vinyl ester Beam Loading Chart. To obtain the beam loading for PVC channel, reduce the load as follows:

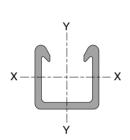

PVC Beam Load = $\frac{\text{(Polyester/Vinyl Ester Beam Load)}}{4}$

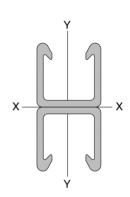

NOTE: PVC is not recommended for lengths over 24".

COLUMN LOADING

Column loads are forces applied directly to the end of the channel. Refer to the table on Page 13 for column loading capacity of various channels.

FLANGE LOADING


Pull-out strength is the channel's resistance to a clamp or fastener inserted under the flange and put under tension. For additional information concerning specific channels, materials and their pull-out strengths, refer to the channel flange pull-out chart on the right.



Heavy Duty Channel	Pull-Out Strength*
20V-2000	449
20P-2000	360
20E-2000	260
Medium Duty Channel	Pull-Out Strength*
20V-1500	229
20P-1500	219
Light Duty Channel	Pull-Out Strength*
20E-1000	239
20P-1000	213
20V-1000	213

^{*}Values shown represent a 3:1 safety factor

SECTION PROPERTIES

						X - X	X Axis			Y - Y Axis.	
Section	Height	Width	Weight	Area	1	R	C1	C ²	I	R	C
Number	(in.)	(in.)	(lbs./ft.)	(in.²)	(in.4)	(in.)	(in.)	(in.)	(in.4)	(in.)	(in.)
2000	15/8	15/8	0.82	1.06	0.31	0.54	0.70	0.93	0.42	0.63	0.82
2100	31/2	15//8	1.64	2.12	1.77	0.91	1.63	1.63	0.85	0.63	0.82
1500	11/2	11/2	0.55	0.71	0.19	0.52	0.62	0.88	0.25	0.59	0.75
1600	3	11/2	1.10	1.42	1.02	0.85	1.50	1.50	0.49	0.59	0.75
1000	11//8	11/2	0.47	0.61	0.10	0.40	0.51	0.62	0.22	0.60	0.75
1100	21/2	11/2	0.94	1.22	0.42	0.59	1.13	1.13	0.44	0.60	0.75

The multipliers shown in the beam loading conversion table reflect the adjustments to be made for a variety of beam loading conditions. The multipliers should be used in conjunction with the Beam Loading Chart.

The values in the Beam Loading Chart are based on a simple beam with uniform loading. By using the Beam Loading Conversion Table, you will be able to estimate the maximum recommended loading and deflection for your particular application.

LOAD AND SUPPO	LOAD AND SUPPORT CONDITION					
Simple Beam, Uniform Load		1.00	1.00			
Simple Beam, Concentrated Load at Center	+ +	0.50	0.80			
Simple Beam, Two Equal Concentrated Loads at 1/4 pts	, 	1.00	1.10			
Beam Fixed at Both Ends, Uniform Load		1.50	0.30			
5. Beam Fixed at Both Ends, Concentrated Load at Center	+	1.00	0.40			
6. Cantilever Beam, Uniform Load	SPAN	0.25	2.40			
7. Cantilever Beam, Concentrated Load at End		0.12	3.20			
8. Continuous Beam, Two Equal Spans, Uniform Load on One Span	SPAN SPAN	1.30	0.92			
Continuous Beam, Two Equal Spans, Uniform Load on Both Ends		1.00	0.42			
10. Continuous Beam, Two Equal Spans, Concentrated Load at Center of One Span	, <u>, , , , , , , , , , , , , , , , , , </u>	0.62	0.71			
11. Continuous Beam, Two Equal Spans, Concentrated Load at Center of Each Span	+ +	0.67	0.48			

EXAMPLE:

Determine load and deflection of a 30" 20P-2100 cantilever beam with a concentrated load on the end.

Solution:

- 1. From the load table on the previous page, the maximum load for a 30° span is 2,224 lbs. and deflection for that load is 0.177°.
- 2. Multiply by factors from the table above.

Load = 2,224 lbs. x 0.12 = 267 lbs. Deflection = 0.177" x 3.20 = 0.566"

3.Thus, the 30" cantilver beam will support a maximum concentrated load of 267 lbs. on the end and that load will cause a 0.566" deflection.

Polyester/Vinyl Ester Beam Loading Chart								
		(Safety F	rm Beam Load actor - 3:1)	Defl. of 1	Uniform Load at Defl. of 1/360 Span			
Span	Part Number	Load (lbs.)	Deflection (in.)	Load (lbs.)	Deflection (in.)	Load (lbs.)		
	20P/V-2100	5,559	0.028	5,559	0.033	9,454		
4011	20P/V-1600	4,836	0.043	3,778	0.033	7,007		
12"	20P/V-1100	3,804	0.082	1,556	0.033	5,961		
Span	20P/V-2000	3,561	0.102	1,159	0.033	5,160		
Span	20P/V-1500	1,950	0.093	700	0.033	3,439		
	20P/V-1000	1,629	0.151	359	0.033	2,759		
	20P/V-2100	3,706	0.064	2,914	0.050	8,866		
4011	20P/V-1600	3,224	0.096	1,697	0.050	6,501		
18"	20P/V-1100	2,536	0.183	691	0.050	5,509		
Span	20P/V-2000	2,374	0.230	515	0.050	4,704		
Opan	20P/V-1500	1,300	0.209	311	0.050	3,136		
	20P/V-1000	1,086	0.340	160	0.050	2,351		
	20P/V-2100	2,780	0.113	1,639	0.067	8,181		
24"	20P/V-1600	2,418	0.171	944	0.067	5,909		
24	20P/V-1100	1,902	0.326	389	0.067	4,979		
Span	20P/V-2000	1,781	0.410	290	0.067	4,168		
opan.	20P/V-1500	975	0.371	175	0.067	2,778		
	20P/V-1000	815	0.605	90	0.067	1,862		
	20P/V-2100	2,224	0.177	1,049	0.083	7,405		
30"	20P/V-1600	1,934	0.267	604	0.083	5,236		
30	20P/V-1100	1,522	0.509	249	0.083	4,375		
Span	20P/V-2000	1,424	0.640	185	0.083	3,553		
- -	20P/V-1500	780	0.580	112	0.083	2,369		
	20P/V-1000	652	0.945	57	0.083	1,298		
	20P/V-2100	1,853	0.254	730	0.100	6,451		
36"	20P/V-1600	1,612	0.384	420 173	0.100	4,482		
30	20P/V-1100 20P/V-2000	1,268 1,187	0.734 0.922	173 129	0.100 0.100	3,698 2,859		
Span	20P/V-1500	650	0.836	78	0.100	1,906		
•	20P/V-1000 20P/V-1000	543	1.360	40	0.100	901		
	20P/V-2100	1,390	0.452	410	0.133	4,534		
	20P/V-1600	1,209	0.432	236	0.133	2,809		
48"	20P/V-1100	951	1.304	97	0.133	2,254		
	20P/V-2000	890	1.638	72	0.133	1,636		
Span	20P/V-1500	488	1.486	44	0.133	1,091		
-	20P/V-1000	407	2.418	22	0.133	507		
	20P/V-2100	1,112	0.707	262	0.167	2,902		
	20P/V-1600	967	1.067	151	0.167	1,798		
60"	20P/V-1100	761	2.038	62	0.167	1,442		
	20P/V-2000	712	2.560	46	0.167	1,047		
Span	20P/V-1500	390	2.321	28	0.167	698		
	20P/V-1000	326	3.779	14	0.167	324		
	20P/V-2100	927	1.018	182	0.200	2,015		
	20P/V-1600	806	1.536	105	0.200	1,248		
72"	20P/V-1100	634	2.935	43	0.200	1,001		
	20P/V-2000	594	3.686	32	0.200	727		
Span	20P/V-1500	325	3.343	19	0.200	485		
	20P/V-1000	272	5.441	10	0.200	225		

CHANNEL FITTINGS

Aickinstrut Channel Fittings are required to fabricate an Aickinstrut structure and are easily attached to Aickinstrut Channels with channel nuts and polyurethane fasteners. The fittings are offered in two types; fabricated (cut from flat stock) or molded. Fabricated fittings are made from either polyester or vinyl ester material. All molded fittings with the exception of the post bases are molded in polyurethane. Post bases are also offered in polypropylene.

The 2500 Series Fittings are manufactured from ³/₈" flat material. The 2800 Series Fittings are manufactured from ³/₈" flat material and feature grooves which stabilize the fittings when mounted to the open side of the channel. All channel fittings are provided with ¹³/₂" holes which accommodate ³/₈" hardware, however several of the new molded fittings come with ⁹/₈" holes 50PU-2616, 50PU-2611, and 50PU-2613. Larger diameter holes can be provided upon special request.

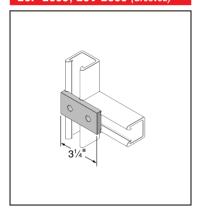
Legend

R = Right Hand

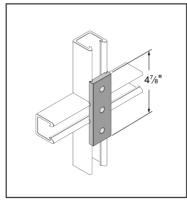
L = Left Hand

P Series Fittings are Grey

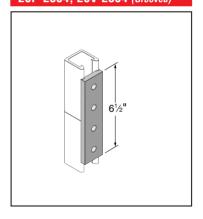
V Series Fittings are Beige

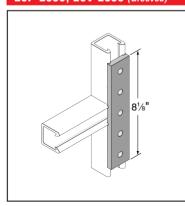

2500 Series - Flat

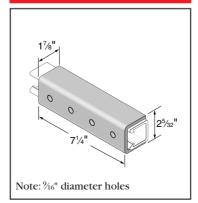
2800 Series - Grooved

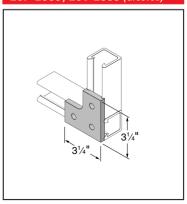

NOTE

Illustrations depict grooved channel fittings.


20P-2500, 20V-2500 (Flat) 20P-2800, 20V-2800 (Grooved)

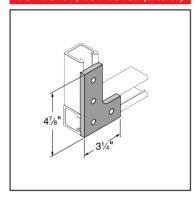

20P-2502, 20V-2502 (Flat) 20P-2802, 20V-2802 (Grooved)

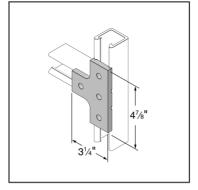

20P-2504, 20V-2504 (Flat) 20P-2804, 20V-2804 (Grooved)

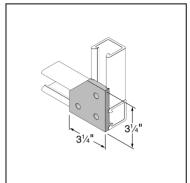

20P-2506, 20V-2506 (Flat) 20P-2806, 20V-2806 (Grooved)

50PU-2616

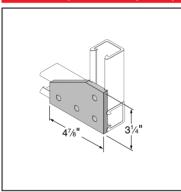
20P-2508, 20V-2508 (Flat) 20P-2808, 20V-2808 (Grooved)

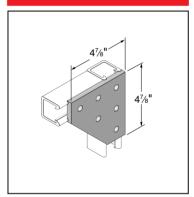





20P-2510, 20V-2510 (Flat) 20P-2810R, 20V-2810R (Grooved) 20P-2810L, 20V-2810L (Grooved)

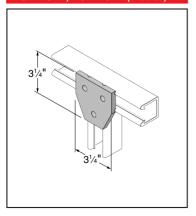
20P-2514, 20V-2514 (Flat) 20P-2814, 20V-2814 (Grooved)

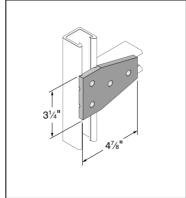


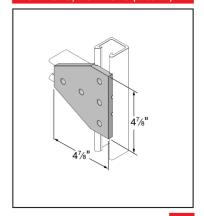

20P-2516, 20V-2516 (Flat) 20P-2816R, 20V-2816R (Grooved) 20P-2816L, 20V-2816L (Grooved)

20P-2518, 20V-2518 (Flat) 20P-2818, 20V-2818 (Grooved)

20P-2520, 20V-2520 (Flat) 20P-2820, 20V-2820 (Grooved)

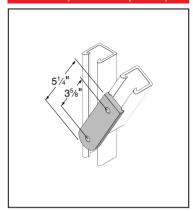


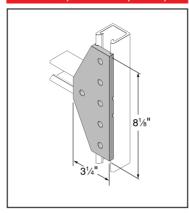


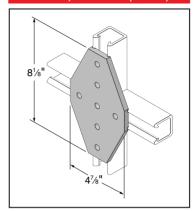

20P-2522, 20V-2522 (Flat) 20P-2822, 20V-2822 (Grooved)

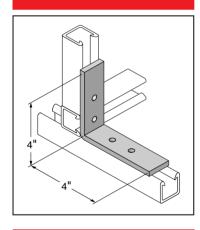
20P-2524, 20V-2524 (Flat) 20P-2824, 20V-2824 (Grooved)

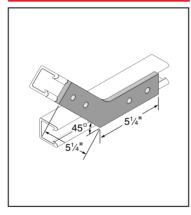
20P-2526, 20V-2526 (Flat) 20P-2826, 20V-2826 (Grooved)

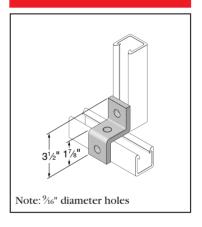


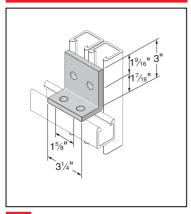

Channel Fittings

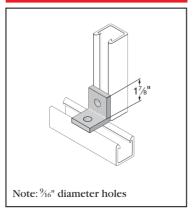

20P-2528, 20V-2528 (Flat) 20P-2828, 20V-2828 (Grooved)

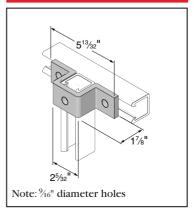

20P-2530, 20V-2530 (Flat) 20P-2830, 20V-2830 (Grooved)


20P-2534, 20V-2534 (Flat) 20P-2834, 20V-2834 (Grooved)

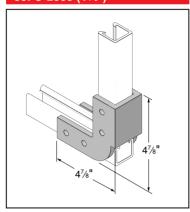

20P-2541, 20V-2541 (Flat)

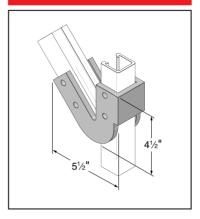

20P-2540, 20V-2540 (Flat) 20P-2840, 20V-2840 (Grooved)

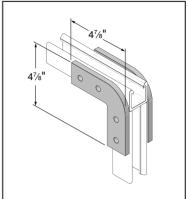

50PU-2611 (Flat)

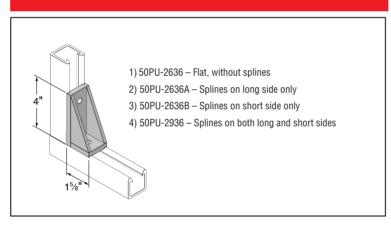

20P-2542, 20V-2542 (Flat)

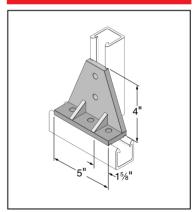
50PU-2611-SP

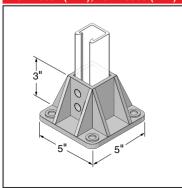

50PU-2613 (Flat)

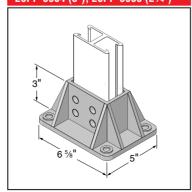

18 Aickinstrut


50PU-1508 (1½") 50PU-2008 (1½")


50PU-2045 (15/8")

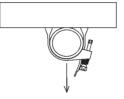

50PU-2090 (15/8")


50PU-26361, 50PU-2636A2, 50PU-2636B3, 50PU-29364


50PU-2538 (Flat)

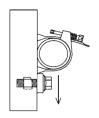
20PU-5853 (1⁵/₈"), 20PU-5854 (1¹/₂"), 20PU-5855 (1¹/₈"), 20PP-5853 (1⁵/₈"), 20PP-5854 (1¹/₂"), 20PP-5855 (1¹/₈")

20PU-5903 (3¹/₄"), 20PU-5904 (3"), 20PU-5905 (2¹/₄"), 20PP-5903 (3¹/₄"), 20PP-5904 (3"), 20PP-5905 (2¹/₄")



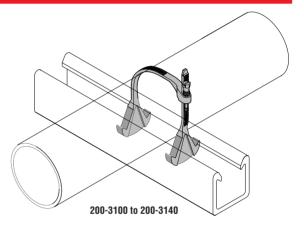
AICKINCLAMPS DESIGN LOAD INFORMATION

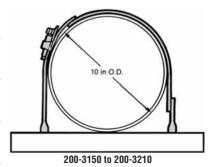
There are two types of piping system loadings, overhead (Type 1) and vertical (Type 2) as described below. All Aickinstrut pipe straps and clamps show the recommended loading for both types of loading.


Type 1 Design Load

The design load shown represents pipes supported below the strut. The design loads shown are based on a minimum ultimate failure safety factor of 3:1.

Type 2 Design Load


The design loading shown can be achieved with the addition of a vertical stop lock assembly (Part #200-4219) installed directly beneath the pipe clamp. The adjacent illustration shows how the vertical stop lock assembly provides additional support for pipe and how it can be used to achieve full Type 2 design loads.

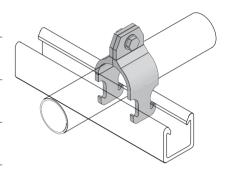

Design loads are based on a minimum clamp slip safety factor or 3:1. It is recommended that stop lock assemblies be used for all vertical pipe support applications.

Adjustable Pipe Clamps

Aickinstrut Adjustable Pipe Clamps are manufactured from glass-reinforced polyurethane and are adjustable to accommodate a wide range of outside diameters. They can be utilized with a variety of piping systems including: PVC, fiberglass, copper, rigid steel conduit and PVC coated rigid steel conduit. Aickinclamps sized $6\frac{1}{2}$ " – 20" are to be used only in non-load bearing applications. These are applications where the weight of the pipe is being supported by Aickinstrut structural members (see figure on right). Aickinclamps can safely be used in temperatures up to 160° F. For operating temperatures of 160° 230°F, it is recommended to use PVDF clamps. PVDF clamps are available as a special order. Contact the factory for pricing and availability. Care should be taken not to exceed 3 ft./lbs. of torque on the adjustable pipe straps.

Part Number	O.D. Pipe Size (in.)	Design Load (lbs.)* Type 1 Type 2		Torque (ft./lbs.)
200-3100	1/2 - 11/2	135	65	10 in./lbs.
200-3110	$1\frac{1}{2} - 2\frac{1}{4}$	135	65	3
200-3120	$2\frac{1}{4} - 3\frac{1}{4}$	145	70	3
200-3130	3 - 4	215	70	3
200-3140	$4 - 6\frac{1}{2}$	215	70	3
200-3150	$6\frac{1}{2} - 8$	Non-Loa	ıd Bearing	3
200-3160	8 - 10	Non-Loa	ıd Bearing	3
200-3170	10 - 12	Non-Loa	ıd Bearing	3
200-3180	12 - 14	Non-Loa	ıd Bearing	3
200-3190	14 - 16	Non-Load Bearing		3
200-3200	16 - 18	Non-Load Bearing		3
200-3210	18 - 20	Non-Loa	ıd Bearing	3

^{*}Design loads shown represent a 3:1 safety factor.


Rigid Pipe Clamps

Aickinstrut Rigid Pipe Clamps resemble the more traditional style of pipe clamps. These clamps are made from glass-reinforced polyurethane and are sized based on the pipe inside diameter or nominal size.

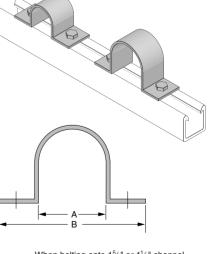
Polyurethane clamps are recommended for applications up to 160°F. For high temperature applications (up to 230°F), PVDF clamps are available as a special order. Contact the factory for pricing and availability.

Care should be taken not to exceed the recommended torque values of the rigid pipe clamps.

Part	Nominal	PVC Sch. 80 and	Des Loads	3	FRP Bolt	FRP Bolt Torque
Number	Size (in.)	Rigid Metal	Type 1	Type 2	Size (in.)	(ft./lbs.)
PCR-050	1/2	0.840	225	90	3/8 x 11/4	3
PCR-075	3/4	1.050	225	90	3/8 x 1 1/4	3
PCR-100	1	1.315	225	90	3/8 x 1 1/4	3
PCR-125	11/4	1.660	225	90	3/8 x 1 1/4	3
PCR-150	11/2	1.900	225	90	3/8 x 1 1/4	3
PCR-200	2	2.375	225	90	3/8 x 1 1/4	3
PCR-250	21/2	2.875	225	90	3/8 x 1 1/4	3
PCR-300	3	3.500	225	90	3/8 x 1 1/4	3
PCR-400	4	4.500	300	125	3/8 x 11/4	3
PCR-600	6	6.625	300	125	3/8 x 1 1/4	3
PCR-800	8	8.625	300	125	3/8 x 1 1/4	3

Two Hole Pipe Straps

Aickinstrut Two Hole Pipe Straps are designed for use in securing pipe, conduit and ducts to Aickinstrut Channel. Two hole fiberglass straps can also be used independently from the channel for surface mounting. All sizes of the straps are suitable for load bearing applications.

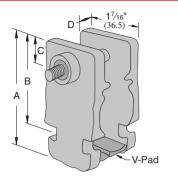

The two hole pipe straps are manufactured from a fireretardant, glass reinforced polyester resin. For extreme chemical environments, the straps can be manufactured from vinyl ester resin. Larger diameter straps for special applications are also available. Contact the factory for pricing and availability of vinyl ester and large diameter straps. Two hole pipe straps should not be torqued above recommended values.

Part	Dime	nsion	Bolt Size	Material	Design Lo	ad (lbs)*	Torque
Number	A (in.)	B (in.)	(in.)	Size (in.)	Type 1	Type2	(ft./lbs.)
PS050	0.840	4.840	1/2	½ x 15/8	135	50	4
PS075	1.050	5.050	1/2	½ x 15%	135	50	4
PS100	1.315	5.315	1/2	½ x 1 %	135	50	4
PS150	1.900	5.900	1/2	½ x 15/8	135	50	4
PS200	23/8	6.375	1/2	½ x 1%	135	50	4
PS250	27/8	6.875	1/2	½ x 15⁄8	135	50	4
PS300	31/2	7.500	1/2	$\frac{1}{4} \times 1^{5}$ %	135	50	4
PS350	4	8.000	1/2	½ x 15/8	135	50	4
PS400	41/2	8.500	1/2	½ x 15/8	175	60	4
PS500	59/16	9.563	1/2	½ x 15/8	175	60	4
PS600	65/8	10.625	1/2	½ x 15/8	175	60	4
PS800	8 5⁄/8	12.625	1/2	½ x 15⁄8	225	125	4
PS1000	103/4	15.750	5/8	$\frac{1}{4} \times 1^{5}$ %	225	125	10
PS1200	123/4	16.250	5/8	½ x 1 %	225	125	10
PS1400	14	18.000	5/8	3% x 15%	250	150	10
PS1600	16	20.000	5/8	3/8 x 15/8	250	150	10
PS1800	18	23.000	5/8	3% x 15%	250	150	10

^{*}Design loads shown represent a 3:1 safety factor.

Notes: Bolts and channel nuts are sold separately.

www.alliedeg.com


When bolting onto $1\frac{5}{8}$ " or $1\frac{1}{2}$ " channel a $1\frac{1}{4}$ " long bolt is required.

21

^{*}Design loads shown represent a 3:1 safety factor.

Aickin-A-Grip (SST Style Channel Only)

	Nominal		Dimen	sions		Hex Head	Wt/100
Part	Pipe	"A"	"B"	"C"	"D"	Cap Screw	pcs
Number	Size	In	In	In	ln	& Lock Nut	Lbs
NC(P or T)-025	1/4	1 ¹⁵ / ₁₆	13/8	3/8	³ ⁄ ₁₆	½-20 x 1½"	4
NC(P or T)-625	3/8	23/8	15/8	⁷ / ₁₆	1/4	½-20 x 2"	6
NC(P or T)-875	1/2	2 ⁹ ⁄ ₁₆	1 ¹³ ⁄ ₁₆	⁷ / ₁₆	⁵ ⁄16	½-20 x 2"	8
NC(P or T)-100	3/4	211/16	1 ¹⁵ ⁄ ₁₆	7/16	5/16	½-20 x 2"	8

Includes Cushion, V-pad, and Hardware. Materials: Cushion: Thermoplastic elastomer.

Hardware: Stainless Steel with Captured Nylon Locknut

Temperature Rating: -40°F to +275°F **Note**: For use with SST Style Strut only

Multi-Size Adjustment Capability Allows Four Clamp Sizes to Fit Seventeen Sizes of Tube & Pipe.

FEATURE

- Ten sizes of tube;
 Five sizes of pipe...
 Using just four sizes of clamp.
- Diameters from .25" to 1.31"
- · Metric Sizes from 6mm to 32mm
- · Non-Conducting
- · Corrosion Resistant
- UV Resistant
- · Temperature

ADVANTAGE

- · Reduces Inventory SKU's
- · Fewer parts needed on the job.
- Simplifies take-offs & component requirements on projects using both Tube & Pipe Sizes
- · High pull out and slip loads

BENEFIT

- Lowers Inventory Costs.
- Always have the right clamp on hand when you need it.
- Job Costing made easier & more accurate.

Tube Sizes

		0.D.			PullOut	Slip
Part	Tu	be Siz	es	Diameters	Load	Load
Number		In		In	Lbs	Lbs
NCT-025	1/4	3/8	1/2	0.25 - 0.54	500	40
NCT-625	5/8	3/4	7/8	0.62 - 0.87	500	40
NCT-875	7/8	1	11//8	0.87 - 1.12	500	40
NCT-100	1	11//8	11/4	1.00 - 1.31	500	40

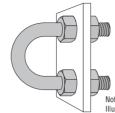
Pipe Sizes

	Nominal		PullOut	Slip
Part	Pipe Sizes	Diameters	Load	Load
Number	In	In	Lbs	Lbs
NCP-025	1/4	0.25 - 0.54	500	40
NCP-625	3/8 1/2	0.62 - 0.87	500	40
NCP-875	3/4	0.87 - 1.12	500	40
NCP-100	³ / ₄ 1	1.00 - 1.31	500	40

Nominal Pipe Size	Water Filled Weight	Code Required Support Spacing ⁽³⁾	Pipe Load At Support	Safety F from Allow	
(Sch 40)	(lbs/ft)	(ft)	(lbs)	Pullout	Slip
1/4"	0.470	7	3	150	12
3/8"	0.651	7	5	110	9
1/2"	0.983	7	7	70	6
3/4"	1.361	7	10	50	4
1"	2.055	7	14	30	3

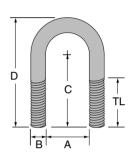
⁽¹⁾ Based on preliminary testing

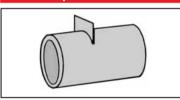
⁽²⁾ SF = 5 to Ultimate Load


⁽³⁾ Per MSS-SP69 & ASME B31.1 for water filled pipe

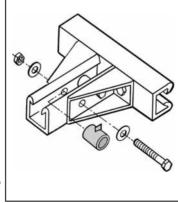
Nonmetallic U-bolts

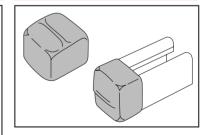
Aickinstrut Nonmetallic U-Bolts provide a corrosion resistant alternative to traditional metallic U-Bolts. Made from glass-reinforced polyurethane, these bolts will outlast stainless steel in most corrosive applications. Nonmetallic U-Bolts have oversized diameters which allow them to hold steel conduit and plastic pipe.


Each U-Bolt comes with two polyurethane hex nuts. Additional nuts and washers can be purchased separately.

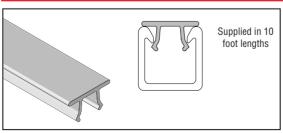

The U-Bolts can also be installed to allow for thermal expansion and contraction of plastic pipe as shown here.

Note: Plate not included. Illustration purpose only


Part	Oi (in)	"A" D:	"D" D:	"O" D:	"D" D:	"TI " D:	Load	Torque
Number	Size (in.)	A DIM.	B DIM.	"C" Dim.	יווע ייעיי.	"TL" Dim.	(lbs.)*	(in./lbs.)*
UB-050	1/2	0.937	0.375	1.568	2.412	1.25	135	40
UB-075	3/4	1.125	0.375	1.662	2.600	1.25	135	40
UB-100	1	1.375	0.375	1.787	2.850	1.25	135	40
UB-125	11/4	1.687	0.375	1.943	3.162	1.25	135	40
UB-150	11/2	2.000	0.375	2.100	3.475	1.25	135	40
UB-200	2	2.437	0.500	2.468	4.187	1.50	135	80
UB-250	21/2	2.937	0.500	2.718	4.687	1.50	135	80
UB-300	3	3.562	0.500	3.031	5.312	1.50	135	80
UB-350	31/2	4.062	0.500	3.281	5.812	1.50	135	80
UB-400	4	4.562	0.500	3.531	6.312	1.50	135	80
UB-600	6	6.750	0.625	5.750	9.875	3.25	135	120


Channel Spacers 50PU-500SP

Channel spacers are designed to prevent wall compression under heavy loading conditions. Such loading occurs during the torquing of hardware for channel fittings. The spacers are molded from polyurethane and will accommodate 3/8" and 1/2" bolts. The spacers are designed to be used only with 15/8" and 11/2" channels.



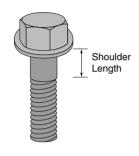
Channel End Cap AIC-EC

The Aickin-End Cap is made from red PVC and designed for 15%" channel. End caps are desired when the ends of the channel need to be enclosed. The Aickin-End Cap easily installs by pressing it onto the end of the channel opening.

Channel Capping Strip 20E-5000

Channel Capping Strip is made from PVC and installs simply by pressing it onto the channel opening. It is designed to be used when a cover is desired for the channel opening (such as concrete embedment channel).

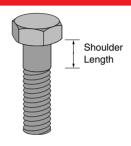
^{*}Torque and load values shown represent a 3:1 safety factor.



Fiberfast Bolts

Fiberfast bolts are provided in two styles and five diameters ($\frac{1}{4}$ ", $\frac{3}{8}$ ", $\frac{1}{2}$ ", $\frac{5}{8}$ " and $\frac{3}{4}$ ") and range in length from $1^{\frac{1}{4}}$ " to $3^{\frac{1}{2}}$ ". The flanged style incorporates a molded washer collar which eliminates the need for a washer. The flanged style is provided for $\frac{1}{4}$ " diameter bolts. Flanged bolts are available in $\frac{3}{8}$ " diameter as a special order item. The hex head style is provided for all $\frac{3}{8}$ ", $\frac{5}{8}$ " and $\frac{3}{4}$ " diameter bolts. All Fiberfast bolts are not fully threaded, therefore, shoulder

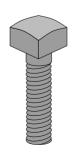
length (nonthreaded portion) dimensions have been provided. Fiberfast bolts are ideal for mechanical connections that require a high degree of corrosion resistance. The 3%" diameter fasteners are recommended for all channel fitting mechanical connections. All Fiberfast bolts are manufactured from glass-reinforced polyurethane and are packaged in bags containing 25 pieces.


Hex Flange Bolts

Part Number	Size (in.)	Thread Shear (lbs.)*	Shank Shear (lbs.)*	Shoulder Length (in.)	Torque (ft./lbs.)
250PU-075	1/4 x 3/4	110	210	Full Thread	10 In./lbs.
250PU-100	½ x 1	110	210	Full Thread	10 In./lbs.
250PU-150	1/4 x 1 1/2	110	210	1/2	10 In./lbs.
500PU-125	½ x 1½	450	870	Full Thread	8
500PU-150	½ x 1½	450	870	Full Thread	8
500PU-200	½ x 2	450	870	3/4	8
500PU-250	½ x 2½	450	870	3/4	8
500PU-300	½ x 3	450	870	1	8
500PU-350	$\frac{1}{2}$ x $3\frac{1}{2}$	450	870	2 ³ / ₁₆	8

^{*}Thread shear values shown represent a 3:1 safety factor.

Hex Bolts



Part Number	Size (in.)	Thread Shear (lbs.)*	Shank Shear (lbs.)*	Shoulder Length (in.)	Torque (ft./lbs.)
375PU-125	3/8 x 11/4	250	470	Full Thread	3
375PU-150	3% x 1½	250	470	1/4	3
375PU-200	3% x 2	250	470	1/2	3
375PU-250	3/8 x 21/2	250	470	3/4	3
375PU-300	3% x 3	250	470	1	3
625PU-125	5⁄8 x 11∕4	700	1,360	1/4	12
625PU-150	5% x 1½	700	1,360	1/4	12
625PU-200	5⁄8 x 2	700	1,360	1/4	12
625PU-250	5⁄8 x 21∕2	700	1,360	1/4	12
625PU-300	5% x 3	700	1,360	1/4	12
625PU-350	5⁄8 x 31∕2	700	1,360	11/4	12

^{*}Thread shear values shown represent a 3:1 safety factor.

Vinyl Ester Square Head Bolts

Vinyl ester square head bolts are used for concrete mounting and general purpose fastening applications. The square head bolts are constructed from vinyl ester all-thread rod and vinyl ester square nuts. The units are bonded together with a durable two part urethane adhesive. The square head bolts are offered in ³/₈" diameter but can be supplied in other diameters as a special order. Contact the factory for pricing and availability of special diameter square head bolts.

Part	Size	Thread Shear	Torque
Number	(in.)	(lbs.)*	(ft./lbs.)*
375V-100	3% x 1	250	10
375V-125	3/8 x 11/4	250	10
375V-150	3/8 x 11/2	250	10
375V-175	3% x 13/4	250	10
375V-200	3/8 x 2	250	10
375V-250	3/8 x 21/2	250	10
375V-300	3% x 3	250	10
375V-350	3/8 x 31/2	250	10
375V-400	3/8 x 4	250	10

^{*}Thread shear values shown represent a 3:1 safety factor.

Fiberfast Hex Nuts

Aickinstrut hex nuts are available in two styles; hex and hex flange nuts. The Aickinstrut hex nut is similar in design to the conventional hex nut and is preferred for channel fitting connections. The Aickinstrut hex flange nut is preferred for applications that require additional thread engagement (such as with all-thread rod) or maximum

thread shear strength. All nuts are manufactured from glassreinforced polyurethane and are packaged in bags containing 25 pieces. All hex and hex flange nuts are available in PVDF and Polypropylene and metric sizes as a special order. Contact the factory for pricing and availability.

Hex Nuts

Hex Flange Nuts

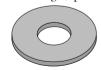
Vinyl Ester Square Nuts

Square nuts are manufactured from pultruded vinyl ester square stock. They are recommended for applications that require high thread shear values. Square nuts are packaged in bags containing 25 pieces.

		Thread		
Part	Size	Shear	Height	Torque
Number	(in.)	(lbs.)*	(in.)	(ft./lbs.)
250PU-000	1/4-20	150	0.218	10 in./lbs.
375PU-000	3%-16	460	0.328	3
500PU-000	½-13	800	0.437	8
625PU-000	5⁄8 -11	1,000	0.546	12
750PU-000	3-10	1,000	0.640	15
1000PU-000	1-8	1,100	0.859	17

^{*}Thread shear values shown represent a 3:1 safety factor.

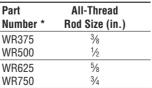
		Thread		
Part	Size	Shear	Height	Torque
Number	(in.)	(lbs.)*	(ln.)	(ft./lbs.
375PU-FN-000	3%-16	500	0.750	3
500PU-FN-000	1/2-13	1,200	0.855	8
625PU-FN-000	5⁄8 -11	2,200	1.220	12
750PU-FN-000	³ ⁄ ₄ -10	2,900	1.590	15
1000PU-FN-000	1-8	2900	1.75	17


^{*}Thread shear values shown represent a 3:1 safety factor.

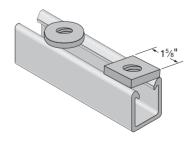
		Thread		
Part	Size	Shear	Height	Torque
Number	(in.)	(lbs.)*	(In.)	(ft./lbs.)
375V-000	3/8-16	1,300	0.437	10
500V-000	1/2-13	1,700	0.562	10
625V-000	5/8-11	1,700	0.687	10
750V-000	3/4-10	1,700	0.812	10
1000V-000	1-8	1,700	0.937	10

^{*}Thread shear values shown represent a 3:1 safety factor.

Flat Washers


Flat Washers are made from PVC and are available for ½" diameter through 1". PVC washers are recommended for connections that utilize hex nuts and bolts. PVC washers are packaged in bags containing 25 pieces.

Part Number	Size (in.)	Outside Diameter (in.)
250E-999	1/4	0.49
375E-999	3/8	1.00
500E-999	1/2	1.25
625E-999	5/8	1.50
750E-999	3/4	1.50
1000E-999	1	2.25


All-Thread Washers

Aickinstrut All-Thread Washers are flat fiberglass wshers for use with FRP all-thread rods. All-Thread rod washers are 1/4" thick with a 1-7/8" diameter and are available in polyester or vinyl ester resin. To order vinyl ester, add the suffix "V" to the part number. To order square washers add the suffix "-SQ" to the part number.

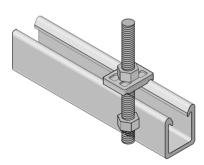
^{*} Add the suffix "V" to the part number to specify vinyl ester Example "WR500V"

^{*} Add the suffix "-SQ" to the part number to specify square washer Example "WR500-SQ"

Channel Nuts

Channel nuts are provided in two types; Standard Duty and Heavy Duty. Standard Duty channel nuts are designed for light duty applications that do not require high thread shear values. Standard duty channel nuts can also be used with all sizes of Aickinstrut Channel. Heavy duty channel nuts are designed to be used where high thread shear values or spring nuts are required. Heavy duty channel nuts can not be used with Series 1000 Channel (light duty). All channel nuts are manufactured from glass-reinforced polyurethane and are packaged in bags containing 50 pieces. Channel nuts are also available in PVDF as a special order. Contact the factory for pricing and availability.

Heavy Duty Channel Nuts



		Hireau	
Part	Size	Shear	Torque
Number	(in.)	(lbs.)*	(ft./lbs.)
375PU-CNHD	³ / ₈ -16	1,400	8
500PU-CNHD	1/2-13	1,400	8
625PU-CNHD	⁵ ⁄8-11	1,400	10
750PU-CNHD	³ / ₄ -10	1,400	10
10PU-CNMHD	10 mm	1,400	8
12PU-CNMHD	12 mm	1,400	8
16PU-CNMHD	16 mm	1,400	10
20PU-CNMHD	20 mm	1,400	10

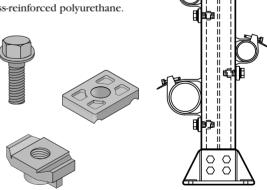
Throad

Saddle Clips

Aickinstrut Saddle Clips make fastening through Aickinstrut channel much easier. The clips mate with the exterior of the channel flanges and are secured with threaded rods and nuts. The saddle clips are manufactured from glass reinforced polyurethane and are supplied in bags of 50 pieces.

Part	Size
Number	(In.)
200-4226	3/8
200-4217	1/2
200-4341	5/8
200-4342	3/4

Standard Duty Channel Nuts


Part Number	Size (in.)	Thread Shear (lbs.)*	Torque (ft./lbs.)
250PU-CN	1/4-20	460	2
312PU-CN	5/16 -18	460	2
375PU-CN	3/8-16	460	3
500PU-CN	1/2-13	460	3
10PU-CN	10 mm	460	3
12PU-CN	12 mm	460	3
10PU-CNS	#10 Screv	v 460	N/A

^{*}Thread shear values shown represent a 3:1 safety factor.

Stop-Lock Assemblies

Aickinstrut Stop-Lock Assemblies reduce the chance of pipe slippage when running supports vertically. Stop-Locks are recommended for applications that are subject to vibration, have regular contact with fluids or are vertically mounted (Type 2). The Stop-Locks fit all three sizes of channel. Stop-Locks are offered with a $\frac{3}{8}$ ", $\frac{1}{2}$ " and $\frac{5}{8}$ " bolt size. The $\frac{5}{8}$ " Stop-Lock Assembly is supplied with a heavy duty channel nut (the $\frac{5}{8}$ " Stop-Lock Assembly will not

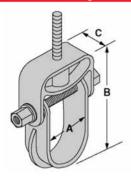
work with the 1000 Series Channel). The Stop-Lock Assemblies' components are manufactured from glass-reinforced polyurethane.

Part Number	Size (in.)	Force Resistance (lbs.)*	Torque (ft./lbs.)
200-4227	3/8	200	7
200-4219	1/2	220	12
200-4343	5/8	250	15

^{*}Force resistance values shown represents a 3:1 safety factor.

Aickinstrut Aickinstrut

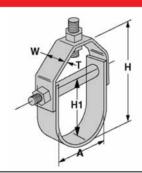
^{*}Thread shear values shown represent a 3:1 safety factor.



Clevis Hangers

Clevis hangers are available in two styles; molded and hand lay-up. The molded clevis hangers are manufactured from glass-reinforced polyurethane and are available for sizes ½"

through 6". The hand lay-up clevis hangers are manufactured from glass-reinforced vinyl ester resin and are available for sizes 1" through 24".


Molded Clevis Hangers

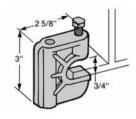
	Nominal	Max.				Hanger	
Part Number	Diameter (in.)	Pipe O.D. (in.)	"A" Dim.	"B" Dim.	"C" Dim.	Rod (in.)	Load (lbs.)*
CVHPU-100	1/2 - 1	1	1.500	4.25	1.25	1/2	670
CVHPU-150	11/4 - 11/2	11/2	2.000	5.14	1.25	1/2	670
CVHPU-200	1½ - 2	2	2.500	6.52	1.25	1/2	730
CVHPU-400	2½ - 4	4	5.125	10.00	1.50	1/2	1,150
CVHPU-600	4½ - 6	6	6.750	12.33	1.50	1/2	1,170

^{*}Design load values shown represent a 3:1 safety factor.

Hand Lay-Up Clevis Hangers

Part	Size Range (In.)	Dir	nensions (i	n.)	Hanger Rod	Trans Rod	Spreader Rod O.D.	Loads
Number	A A	´ T	Н	H1	, W	(in.)	(in.)	(in.)	(lbs.)*
100-1500	1 - 11/2	1/8	23/4	11//8	11/2	1/2	3/8	1/2	60
100-1501	$1\frac{1}{2} - 2$	1/8	31/2	23/8	11/2	1/2	3/8	1/2	60
100-1502	$2 - 2^{5}/_{8}$	1/8	43/4	3	2	1/2	3/8	1/2	90
100-1503	$2\frac{1}{2} - 3\frac{1}{4}$	1/8	5½	35//8	2	1/2	3/8	1/2	120
100-1504	$3 - 3\frac{7}{8}$	1/8	7	41/4	2	5/8	3/8	1/2	160
100-1505	$4 - 5\frac{1}{8}$	3/16	81/2	55/8	2	5/8	3/8	1/2	250
100-1506	6 - 71/8	3/16	10%	71/2	3	5/8	3/8	1/2	300
100-1507	$8 - 9^{1/4}$	1/4	14	93/4	3	5/8	3/8	1/2	350
100-1508	10 - 11%	1/4	18	12	4	5/8	1/2	3/4	450
100-1509	12 - 131/2	1/4	21½	14½	5	5/8	1/2	3/4	600
100-1510	$14 - 15\frac{3}{4}$	1/4	241/2	16½	5	3/4	1/2	3/4	700
100-1511	16 - 18	3/8	273//8	19½	6	3/4	3/4	1	750
100-1512	19 – 21	3/8	34½	221/2	6	3/4	3/4	1	800
100-1513	21 - 22	1/2	$35\frac{1}{2}$	24	6	3/4	3/4	1	850
100-1514	22 - 24	1/2	41	28	6	3/4	3/4	1	900

^{*}Design load values shown represent a 3:1 safety factor.


Beam Clamps

Aickinstrut beam clamps are available in two styles; molded and fabricated. The molded beam clamps are manufactured from glass-reinforced polyurethane and can accommodate $\frac{3}{4}$ ", $\frac{1}{2}$ " and $\frac{5}{8}$ " hanger rod sizes. The molded beam clamps utilize the traditional "C" clamp style design. The fabrication beam clamps are manufactured from vinyl ester flat stock and utilize polyurethane bolts and channel nuts for

clamping. Fabricated beam clamps are available for attaching to $\frac{1}{4}$ ", $\frac{3}{8}$ " and $\frac{1}{2}$ " thick beam flanges. Each fabricated beam clamp assembly includes four (4) $\frac{1}{2}$ " standard duty channel nuts, four (4) $\frac{1}{2}$ " Polyurethane bolts and two (2) attachment clips.

All Aickinstrut beam clamps allow easy attachment of threaded rod to "I" beams or other structural assemblies.

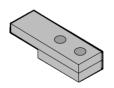

Molded Beam Clamps

Size	Shear	Torque
(in.)	(lbs.)*	(ft./lbs.)
3/8	400	10
1/2	400	10
	3/8	3/8 400

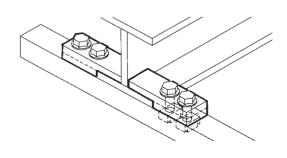
^{*}Design load values shown represent a 3:1 safety factor.

Cope-Glas Beam Clamps

Part Number	Size (in.)	Thread Shear (lbs.)*	Torque (ft./lbs.)
RGBC-1	3/8	500	10
RGBC-2	1/2	500	10
RGBC-3	5/8	500	10

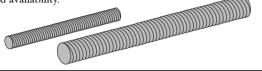

Beam Clip - 375PU-BCCLP (3/8")

Fabricated Beam Clamps



Part Number	Flange Thickness (in.)	Thread Shear (lbs.)*	Torque (ft./lbs.)
20V-2BC-25	1/4	600	10
20V-2BC-37	3/8	600	10
20V-2BC-50	1/2	600	10

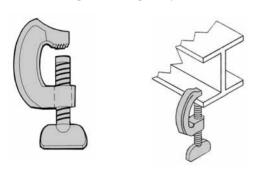
^{*}Design load values shown represent a 3:1 safety factor. Bolts and channel nuts are $\frac{1}{2}$ " diameter.



Threaded Rod

Pultruded threaded rods are an excellent choice for hanging and fastening Aickinstrut Channel. These rods can also be used with either the Aickinstrut vinyl ester square nuts, polyurethane hex nuts, hex flange nuts and Aickinstrut channel nuts. All FRP threaded rod is manufactured from pultruded vinyl ester resin and is gray in color.

The standard rod lengths are 4' and 8'. Special lengths and threading are also available. Contact the factory for pricing and availability.

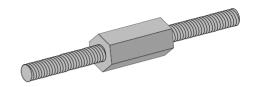


Part Number	Size (in.)	Weight (lbs.)	Thread Shear (lbs.)*	Torque (ft./lbs.)
200-3827	³ / ₈ -16	0.07	415	5
200-3828	1/2-13	0.12	570	10
200-3829	5%-11	0.18	1,260	40
200-3830	³ / ₄ -10	0.28	1,700	50
200-3831	1-8	0.50	3,000	60

^{*} Thread shear values shown represent a 3:1 safety factor.

Duraclamp C-Clamps

Duraclamps are glass-reinforced polyurethane C-Clamps that are designed to replace steel C-Clamps in areas where corrosion is a problem. The individual Duraclamp components can also be purchased separately.

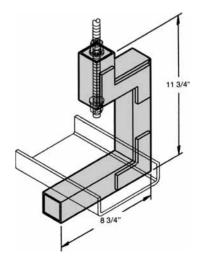


		Thread	
Part		Shear	Torque
Number	Description	(lbs.)*	(ft./lbs.)
390N-150	"C"-Clamp	25	17
390N-BLT	Bolt	N/A	17
390N-CLP	"C"	25	N/A

^{*}Design load values shown represent a 3:1 safety factor. Note: Bolt Dimension is 5%" x 21%"

A-Konnector Rod Couplers

A-Konnectors provide an excellent means for extending Aickinstrut FRP all-thread rods beyond their standard lengths. A-Konnectors are manufactured from glass-reinforced polyurethane and are colored gray. A-Konnectors are packaged in bags containing 25 pieces.

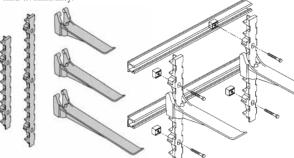

Part Number	Size (in.)	Length (In.)	Thread Shear (lbs.)*
200-3840	3/8-16	21/4	800
200-3841	1/2-13	21/4	870
200-3842	5⁄8- 11	21/4	1,500
200-3843	3/4-10	21/4	1,500

^{*} Thread shear values shown represent a 3:1 safety factor.

Channel Hangers

AIC-CH-P (Polyester) AIC-CH-V (Vinyl Ester)

The Aickin-Channel Hanger is designed to support fiberglass structural "C" channel that is being used as a raceway system for cables, tubing or small diameter piping. The Aickin-Channel Hanger is available in either polyester or vinyl ester resin and is simply supported from a ½" FRP all-thread rod and beam clamp (not provided). The Channel Hanger will accommodate "C" channel width sizes 2" through 8".



^{*} To order eight foot lengths, add suffix "-96" to part number (EX: 200-3827-96)

Power-Rack Stanchions

The Power-Rack Stanchion is the new alternative to traditional iron cable stanchions used for utility and industrial cable supports. Made entirely from glass-reinforced nylon, these stanchions out-perform metallic supports against corrosion. The extended life-span of the Power-Rack Stanchions makes them the logical choice over metallic cable supports. The Power-Rack Stanchion is available in two different lengths and four different arm lengths. The unique interlocking design allows the arm to "lock" into nine different levels on the $14\frac{1}{4}$ " stanchions and fourteen on the $17\frac{1}{2}$ " stanchion. Glass-reinforced polyurethane stanchions are available as a special order. Contact the factory for pricing and availability.

Dimensions – The stanchion back is designed with

%6" wide x 15 6" long holes to accept fasteners for mounting. There are two mounting holes in the 21^3 8" long stanchion and three mounting holes in the 33%6" long stanchion. Thickness at the slotted mounting holes is 1%". The mounting holes are spaced on 12" centers and require $\frac{1}{2}$ " diameter fasteners.

Installation – The Power-Rack Stanchions can be anchored into existing concrete structures using any good quality

industrial anchoring system. For new concrete structures, the Power-Rack Stanchions can be mounted to Aickinstrut concrete embedment channel and attached with ½" channel nuts and ½"x 3" Fiberfast Bolts.

Fire Retardance – Power-Rack materials meet or exceed the requirements of UL94 HB.

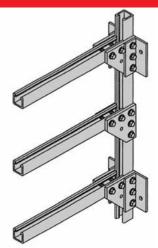
Loading – The recommended allowable loads on Power-Rack Stanchions vary depending upon the position of the arm. Following the guidelines listed below will ensure a safe, reliable installation.

- Total load on any one arm should not exceed 800 lbs.
- The sum of the loads on any arm multiplied by their distances to the wall stanchion should not exceed 1200 in./lbs.

Example – A cable weighing 200 lbs. is positioned on an arm at a distance of 5" from the wall stanchion.

If the total load is less than 800 lbs and the sum of the load multiplied by their distances to the wall stanchion does not exceed 1200 in./lbs., then the system is adequate. In this case,

Total load (200<800 lbs) = 0K

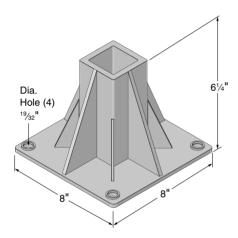

Tot. moment (200x5 in. = 1000<1200 in./lbs.) = 0K

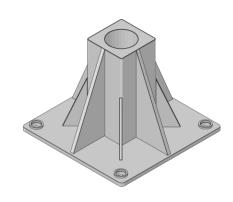
Part No.	Description	Weight (lbs.)	Load (lbs.)*
20N-ARM08	8" Arm	1.00	800
20N-ARM14	141⁄4" Arm	1.16	800
20N-ARM17	17½" Arm	1.45	800
20N-ARM23	23 ⁷ / ₈ " Arm	1.86	800
20N-STA21	21%" Stanchion	1.49	N/A
20N-STA33	335/16" Stanchior	1 2.31	N/A

^{*}Design load values shown represent a 3:1 safety factor.

Wall Brackets

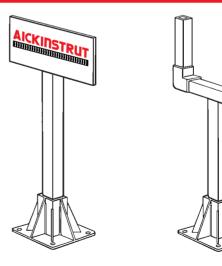
Aickin-Brackets are available in a wide variety of sizes and configurations. These wall brackets are made entirely from Aickinstrut material and are specifically designed to meet the customers requirements. They are ideal for customizing the support of piping, cables, tubing, conduits or cable trays. These brackets are available in either polyester or vinyl ester resin types and will work with all the Aickinstrut accessory items. Consult the factory for design, pricing and availability information.





Heavy Duty Post Base

20PU-5852 (2" Square), 20PU-5852 RD (2" Round) 20PU-5853 HD (15/8" Sq.), 20PU-5854 HD (15/8" Sq.)

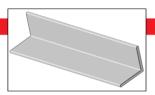

The Aickinstrut heavy duty post base is designed for applications that require a stronger base attachment than the standard Aickinstrut post base. Made from polyurethane, the heavy duty post base is available with four different openings: 1½", 15/8", 2" square and 2" Schedule 80 round. The heavy duty post base is ideal for mounting fiberglass channel, handrails and instrument stands in corrosive environments. The standard color is gray, but special colors are available upon request.

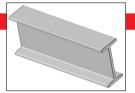
Instrument & Pipe Stands

Aickin-Instrument and Pipe Stands are available in polyester or vinyl ester resin types and are designed to meet specific customer requirements. These stands are ideal for supporting instruments and enclosures in corrosive environments. The stands utilize the Aickinstrut Heavy Duty Post Base and either $2^n \times 2^n \times 1^{1/4}$ square tube or 2^n Schedule 80 pipe to support the instruments or enclosures. These stands can be designed or configured to meet any application. Consult the factory for design, pricing and availability information.

AICKINSHAPE® STRUCTURAL SHAPES

General purpose pultruded structural shapes can be used as a complement to Aickinstrut Channel Framing projects. The shapes are ideal for structural bracing, handrails, handrail kickplates, shims and supporting grating. Structural shapes are available in either polyester or vinyl ester resin and are provided in 20' lengths. Additional structural shapes not listed in this catalog are available. Contact the factory for pricing, availability and minimums. Special sizes and colors can be run based upon quantity.

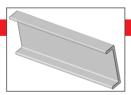

NOTES


- ST Standard Isophthalic Polyester Resin; 0 = (Olive Green)
- FR Isophthalic Polyester Fire Retardant Resin; P = (Dark Gray)
- VE Vinyl Ester Fire Retardant Resin; V = (Beige)
 - Stock Item: ◆ Stocked in Yellow

In part numbers shown below, replace "X" with resin and color code (0, P, V).

I.E.: 18P-1200-20 Polyester Gray 2" x 1/4" Equal Leg Angle

Equal Leg Angle

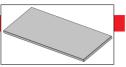



Size (In.)		Resir	1	#/Lin. Ft.	Part No.
3126 (III.)	ST	FR	VE	#/LIII. Ft.	rait No.
1 x ½				0.21	18X-1100-20
11/4 x 1/8	_	_	_	0.23	18X-1110-20
1½ x ¾6				0.37	18X-1120-20
1½ x ¼				0.51	18X-1130-20
2 x ¹ / ₄				0.68	18X-1200-20
3 x ¹ / ₄				1.04	18X-1300-20
3 x 3/8				1.65	18X-1310-20
3 x ½	_	-	_	2.15	18X-1320-20
4 x ½				1.41	18X-1400-20
4 x 3/8				2.23	18X-1410-20
4 x ½				2.92	18X-1420-20
6 x 3/8				3.44	18X-1500-20
6 x ½				4.50	18X-1510-20

Cizo (In)		Resir	1	#/lin Et	Part No.	
Size (In.)	ST	ST FR VE		#/Lin. Ft.	rait No.	
3 x 2 x 1½ x ¼	-	-	-	1.18	18X-2100-20	
3 x 1½ x ¼	-	-	_	1.11	18X-2300-20	
4 x 2 x ½				1.46	18X-2400-20	
6 x 3 x ½				2.24	18X-2600-20	
6 x 3 x 3/8	-	-	_	3.29	18X-2800-20	
8 x 4 x 3/8				4.46	18X-2110-20	
8 x 4 x ½	-	-	_	5.85	18X-2130-20	
10 x 5 x 3/8	-	-	_	5.78	18X-2160-20	
10 x 5 x ½	-			7.41	18X-2180-20	
12 x 6 x ½	_			8.97	18X-2210-25	
18 x 3/8 x 41/2 x 1/2	-	-	_	8.48	18X-2230-20	
24 x 3/8 x 71/2 x 3/4	_	_	_	15.20	18X-2240-20	

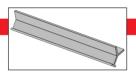
Channel

Wide	Flange	I-Beam



Size (In)	Kesin			#/Lin. Ft.	Part No.	
Size (In.)	ST	FR	VE	π/LIII. I t.	rait No.	
2 x ⁹ / ₁₆ x ¹ / ₈			_	0.25	18X-2916-20	
3 x 1/4 x 1/4			_	0.77	18X-3078-20	
3 x 1 x ½				0.87	18X-3114-20	
3 x 1½ x ¼	-			1.07	18X-3112-20	
3 x ½ x 1¾ 6 x 1/8	_	_	_	0.65	18X-31316-20	
4 x 11/8 x 1/4				1.11	18X-4118-20	
4 x 13/8 x 3/16				0.86	18X-4138-20	
6 x 15/8 x 1/4				1.64	18X-6158-20	
6 x 1 ¹¹ / ₁₆ x ³ / ₈				2.52	18X-61116-20	
8 x 2 ³ / ₁₆ x ³ / ₈				3.40	18X-82316-20	
10 x 2 ³ / ₄ x ¹ / ₂				5.65	18X-10234-20	

Cizo (In)	nesiii			#/Lin. Ft.	Part No.
Size (In.)	ST	FR	VE	#/LIII. Ft.	rait No.
3 x 3 x 1/4				1.69	18X-2200-20
$4 \times 4 \times \frac{1}{4}$				2.10	18X-2500-20
6 x 6 x ½				3.41	18X-2700-20
6 x 6 x 3/8				5.05	18X-2900-20
8 x 8 x 3/8				6.49	18X-2120-20
8 x 8 x ½	_			8.70	18X-2140-20
10 x 10 x 3/8	_	-	_	8.74	18X-2170-20
10 x 10 x ½	_			10.90	18X-2190-25
12 x 12 x ½	-			13.20	18X-2220-25



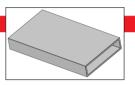
Flat Sheet

	Cizo (In)	Resin		1	#/Lin. Ft.	Part No.
	Size (In.)	ST	FR	VE	#/LIII. FL.	rait No.
Ī	1/8 x 48 x 96				1.14	18X-4100
	3/16 x 48 x 96				1.71	18X-4200
	½ x 48 x 96				2.34	18X-4300
	3% x 48 x 96				3.54	18X-4400
	½ x 48 x 96				4.68	18X-4500
	5% x 48 x 96	_	_	-	5.79	18X-4600
	3/4 x 48 x 96	-	-	-	6.94	18X-4700
_	1 x 48 x 96	_	_	_	9.27	18X-4800

Embedment Angle

Size (In.)			Resir	1	#/I:n F4	Dord No.	
3126	; (111.)	ST	FR	VE	#/Lin. Ft.	Part No.	
1 x 1	½ x ¼	-	_		1.00	18X-111214-20	
1½ x	1½ x ¼	_	-		1.10	18X-11211214-20	
2 x 1	1/2 x 1/4	_	_		1.20	18X-211214-20	

Square Tube


Size (In)	Size (In.) Resin		1	#/Lin. Ft.	Part No.
0120 (111.)	ST	FR	VE	#/LIII. FL.	i ait No.
1 x ½				0.32	18X-3100-20
11/8 x 1/8	-	_	-	0.37	18X-3200-20
11/4 x 1/8	_	_	_	0.41	18X-3300-20
11/4 x 1/4	-	_	-	0.68	18X-3310-20
1½ x 1/8		•	•	0.54	18X-3400-20
1½ x ¼	_	_		0.98	18X-3410-20
13/4 x 1/8	-	•	•	0.63	18X-3500-20
13/4 x 1/4	_	•	•	1.10	18X-3510-20
2 x 1/8		•	•	0.69	18X-3600-20
2 x 1/4		•	•	1.40	18X-3610-20
21/4 x 1/8	_	•	_	0.83	18X-3800-20
21/4 x 1/4	-	-	-	1.56	18X-3810-20
2½ x ¼	_	•	_	1.79	18X-3900-20
3 x 1/8	-	_	-	1.12	18X-3110-20
3 x 1/4				2.15	18X-3111-20
4 x 1/4				2.93	18X-3120-20
4 x 3/8		_	-	4.24	18X-3121-20
6 x 3/8				6.42	18X-3140-20
Toe Plate					
$4 \times \frac{5}{8} \times \frac{1}{8}$	_	•	•	0.49	18X-3130-20

Square Bar

Size (In.)		Resi	n	- #/Lin. Ft.	Part No.
	ST	FR	VE		
1 x 1		_	_	0.87	18X-5100-20
11/4 x 11/4	_	•	_	1.31	18X-5125-20
1½ x 1½	_	•	_	1.98	18X-5150-20
2 x 2	-	_	_	3.12	18X-5200-20

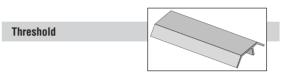
Rectangular Tube

Size (In.)	Resin			#/Lin. Ft.	Part No.	
312e (III.)	ST	FR	VE	#/LIII. Ft.	rail NO.	
4 x 1 x 1/8	-	_	-	0.85	18X-4118-20	
$4 \times \frac{1}{8} \times 2 \times \frac{1}{4}$				1.52	18X-418214-20	
43% x 13% x 1/8 x 3/16	-	_	-	1.18	18X-438138-20	
4½ x 1¾ x 1/8 x 3/16	_	_	-	1.29	18X-412138-20	
5 x 2 x 1/8	-	-	-	1.32	18X-5218-20	
51/8 x 21/8 x 3/16	-	_	-	1.32	18X-518218-20	
6½ x ¼ x 2 x ½	_	_	_	3.77	18X-612212-20	
$6 \times 4 \times \frac{1}{4}$	_		_		18X-6414-20	

Round Rod

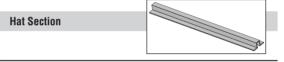
Cizo (In)		Resin	1	#/Lin. Ft.	Part No.
Size (In.)	ST	FR	VE		
1/8		-	-	0.01	18X-70018-20
³ ⁄ ₁₆		-	_	0.02	18X-700316-20
1/4		-	-	0.04	18X-70014-20
5⁄16		-	-	0.07	18X-700516-20
0.35	_	_	_	0.08	18X-70035-20
3/8		-		0.09	18X-70038-20
1/2		-		0.17	18X-70012-20
5/8		-		0.27	18X-70058-20
3/4		-		0.39	18X-70034-20
¹³ / ₁₆	-	-	-	0.46	18X-7001316-20
1		-		0.66	18X-70100-20
11/4		-	_	1.08	18X-70114-20
1½		-	-	1.56	18X-70112-20
2	_	-	_	2.56	18X-70200-20
21/2	_	-	-	4.10	18X-70212-20
3	_	-	_	5.70	18X-70300-20

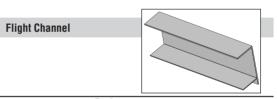
Structural Shapes


Flat Strip

Cizo (In)	Size (In.) Resin		#/Lin Et	Part No.	
Size (III.)	ST	FR	VE	#/Lin. Ft.	Fail No.
5/8 x 1/4		-	-	0.11	18X-605814-96
3/4 x 1/4		_	_	0.14	18X-603414-96
1 x ½	-	_	_	0.11	18X-6118-96
11/4 x 3/16	-	-	-	0.19	18X-6114316-96
1½ x ¾	-	_	-	0.50	18X-611238-96
1½ x 1	-	-	_	1.32	18X-61121-96
13/4 x 1/4		-	-	0.38	18X-613414-96
2 x ½	-	_	-	0.88	18X-6212-96
2 x 1	-	-	-	1.76	18X-6210-96
2½ x 3/16	-	-	-	0.34	18X-6212316-96
3 x ½	-	_	_	0.66	18X-6314-96
3 x 3/8	-	-	-	0.99	18X-6338-96
3 x ½	-	_	_	1.32	18X-6312-96
4 x ½	-	_	-	0.44	18X-6418-96
6 x ½	-	_	-	1.32	18X-6614-96
6 x ½	-	-	-	2.16	18X-6612-96

Special Shapes Door Frame


		Resir			
Profile/Size	ST	FR	VE	#/Lin. Ft.	Part No.
5¾ x 25/8 x 3/16	-	_	-	1.60	18X-DF-20


		Resir	1		
Profile/Size	ST	FR	VE	#/Lin. Ft.	Part No.
5½ x ¼	-	-	-	1.05	18X-TH-20

Round Tube

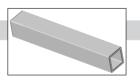
Size (In.)		Resi	n	#/Lin. Ft.	Part No.
0120 (1111)	ST	FR	VE	,	T uit No.
1 x .100	-	-	-	0.22	18X-7100-20
1 x 1/8			-	0.25	18X-7118-20
11/4 x 3/32	-	_	-	0.27	18X-7114332-20
11/4 x 1/8	-	-	_	0.32	18X-711418-20
11/4 x 1/4	-	_	-	0.60	18X-711414-20
1½ x 1/8			_	0.45	18X-711218-20
1½ x ¼	-		-	0.79	18X-711214-20
1¾ x 1/8	-	_	_	0.47	18X-713418-20
13/4 x 1/4	-	_	-	0.94	18X-713414-20
2 x 1/4				1.12	18X-7214-20
3 x.100	-	_	-	0.89	18X-7300-20
3 x ½	-	_	_	1.68	18X-7314-20
3 x ½		_	_	2.98	18X-7312-20
4.89 x 1/8	-	_	_	2.32	18X-7418-20
4.89 x ³ / ₁₆	-	_	_	2.97	18X-74316-20

		Resir	1		
Profile/Size	ST	FR	VE	#/Lin. Ft.	Part No.
2 x 1/8 x .140	_	_	_	0.34	18X-HS-20

	Resin				
Profile/Size	ST	FR	VE	#/Lin. Ft.	Part No.
3 x 6 x 1/8 x 3/16		-	-	1.31	18X-93618316-20
3 x 8 x ¹ / ₈ x ³ / ₁₆		_	_	1.43	18X-93818316-20

Handrail Components

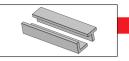
Toe Plate†


Size (in.)	#/Lin. Ft.	Part No.
4 x 5% x 1/8	0.49	18X-3130-20

Square Bar[†]

Size (in.)	#/Lin. Ft.	Part No.	
11/4 x 11/4	1.31	18X*-5125-20	
1½ x 1½	1.98	18X-5150-20	

Square Tube[†]


Size (i	n.) #/Lin. Ft.	Part No.	
11/4 x	1/4 0.68	18X-3310-20	
1½ x	1/8 0.54	18X-3400-20	
13/4 X	1/8 0.63	18X-3500-20	
13/4 X	1/4 1.10	18X-3510-20	
2 x ½	^{′8} 0.69	18X-3600-20	
2 x ½	4 1.40	18X-3610-20	
21/4 X	1/8 0.83	18X-3800-20	
2½ x	1/4 1.69	18X-3900-20	

Fixed Connector[†]

Size (in.)	#/Ea.	Part No.	
4½ x 1¼	0.87	AIC-FC-414	
4½ x 1½	1.32	AIC-FC-412	

Handrail Connectors

Fixed 90°					
Size (In.)	Resin		#/Ea.	Part No.	
312e (III.)	ST	FR	VE	#/Ea.	rail Nu.
11/4	-	*†	-	0.87	AIC-FIXED-90-1-1/4
1 ½	_	*†	_	1.32	AIC-FIXED-90-1-1/2

Adjustable 9	0°			
11/4	-	-	-	AIC-ADJ-90-1-1/4
11/2	-	-	-	AIC-ADJ-90-1-1/2

Fixed "T"				
11/4	_	-	_	AIC-FIXED-T-1-1/4
1½	-	-	-	AIC-FIXED-T-1-1/2

Sealers, Coatings, Promotional Material

Aickinzap

600-2200

Aickincoat 600-1500 (Quart), 600-1600 (Gallon)

Aickinzap is an acrylic spray that provides a corrosion resistant coating when applied to cut sections of Aickinstrut. Aickinzap is supplied in a 12 oz. can and is recommended for use as a sealant for Aickinstrut polyester and vinyl ester materials after cutting or drilling. Aickinzap is the quickest, most convenient method for sealing after fabrication.

Aickincoat is a "brush-on" corrosion resistant sealant that should be applied to all cut or drilled surfaces of fiberglass to seal exposed areas from corrosion. Aickincoat dries into a clear, hard, glossy coating that restores weathered fiberglass surfaces and provides an excellent barrier from ultraviolet degradation. It is available in quart and gallon cans.

Custom Fabrication and Promotional Material

Promotional materials are available for select individuals, including stocking distributors, end users, OEM's,

contractors, specifying engineers, consultants and sales representatives. Please contact the factory for availability.

AICK-DIST-DISP

The Aickin Distributor Display is a counter top display for stocking distributors. This display features multiple channel sizes and materials, adjustable and rigid pipe straps, U-bolts, molded and fabricated channel fittings, post bases, clevis hangers and fasteners. All of these materials are then assembled to form a comprehensive, compact display which becomes an excellent sales tool.

Aickin Rigid Pipe Clamp Sample

ARPS2

The Aickin Rigid Pipe Clamp Sample is a desk top sample that displays the rigid pipe strap clamping a piece of PVC pipe onto a section of Aickinstrut Channel.

Aickin Adjustable Pipe Clamp Sample AJPSS2

The Aickin Adjustable Pipe Clamp Sample is a desk top sample that displays the Aickin Adjustable Pipe Strap clamping a piece of PVC pipe onto a section of Aickinstrut Channel.

Aickin Distributor Literature Displays
(Hanging)
AICK-LIT-DISP
(Counter Stand)
AICK-LIT-DISP-CS

The Aickin Distributor Literature Display is offered in two designs; wall hanging and counter standing. The wall hanging design is meant to be hung from the two top U-bolts while the counter standing design is a free standing counter display. Both displays incorporate Aickinstrut channel in their design and utilize the PVC display pipe as the literature container.

Aickin Sample Box

AICK-SAMP-CART

The Aickin Sample Box is a convenient plastic carrying case with a complete sampling of the Aickinstrut product line.

Each Sample Box includes:

- PVC strut sample (20E-2000)
- Polyester strut sample (20P-2000)
- Polyester slotted strut sample (20P-1100)
- Vinyl ester strut sample (20V-1500)
- Polyester solid channel fitting (20V-2500)
- Vinyl ester grooved channel fitting (20V-2802)
- Saddle Clip (200-4226)
- Fiberfast bolts (250PU-000, 375PU-125 & 500PU-000)
- Fiberfast nuts (250PU-000, 375PU-125 & 500PU-CN)
- Square nut (500V-000)
- PVC washers (375E-999 & 500E-999)
- Standard duty channel nuts (375PU-CN & 500PU-CN)
- Heavy duty channel nut (500PU-CNHD)
- Adjustable pipe clamp (200-3110)
- Rigid pipe clamp (PCR-125)
- FRP threaded rod samples (200-3827 & 200-3828)

Aickingrate Fiberglass Grating was developed as a corrosion resistant alternative to traditional metallic grating. Aickingrate will not rust, resists corrosion, lasts longer than metal and is maintenance free. Aickingrate never requires painting and can be installed with standard hand tools.

Other valuable Aickingrate features include:

- Availability of polyester or vinyl ester fire retardant resin systems, which offer superior corrosion resistance, strength and fire protection.
- Applied grit anti-slip surface on molded grating, which provides superior traction.
- Panels are strong and flexible providing a comfortable working surface that enhances safety while reducing worker fatigue.
- Panels are lightweight, easy to install and easy to remove for maintenance.
- UV inhibitors are added to the base resin systems providing optimum protection from the effects of weathering.
 Pultruded grating is further enhanced with the addition of a synthetic surfacing veil.

Aickingrate pultruded and molded gratings are ideal for the following applications:

- Aquariums
- · Chemical & Petrochemical
- Food & Beverage
- Marine
- Mining
- Offshore
- Plating
- · Power Generation & Utilities
- Pulp & Paper
- · Recreation & Pools
- Transportation
- Water & Wastewater

Aickingrate pultruded and molded gratings are practical, economical solutions for applications where metallic gratings are not well suited. Aickingrate offers the best solution for your industrial flooring needs.

Because Aickingrate is marketed with Aickinstrut Non-Metallic Strut Support Systems and Aickinshapes Non-Metallic Structural Shapes, the customer has the benefit of purchasing all of these items from a single source, thereby minimizing start-up and delivery delays.

Aickingrate stands ready to provide customer assistance through its network of distributors and mechanical sales representatives.

AICKINGRATE® FIBERGLASS GRATING

Aickingrate molded grating is a one piece, glass-reinforced design available in standard sized 3' x 10' and 4' x 12' panels. Each panel is composed of non-flame retardant polyester resin, flame retardant polyester resin or vinyl ester resin and continuous fiberglass rovings for optimum strength and corrosion resistance. All Aickingrate molded grating is provided with an applied grit anti-skid surface. This anti-skid surface is applied onto

the meniscus surface of each panel providing an extremely long lasting, effective, anti-skid surface. Standard meniscus surface grating is also available upon request.

Aickingrate molded grating does not rust, never requires painting and resists corrosion. The panels have a high strength-to-weight ratio and are maintenance free. They also are lightweight and can easily be installed without heavy equipment. Fabricating

Aickingrate can easily be accomplished with standard tools.

Aickingrate is ideal for work platforms. The resiliency designed into each panel reduces worker leg and back pain and lowers overall worker fatigue resultingin increased productivity. These worker anti-fatigue benefits make Aickingrate ideal for platforms, catwalks, flooring, work stations and mezzanines.

Resin Systems

Polyester

The Aickingrate polyester resin system has two flame spread ratings. The fire retardant system has a rating of 25 or less based on the requirements of ASTM E 84. The non-fire retardant system is not rated. Both systems are designed for applications that will see moderate exposure to corrosive elements. These resin systems are ideal when a cost-effective, corrosion resistant, system is required.

Standard Colors: Green & Yellow Special colors are available upon request.

Vinyl ester

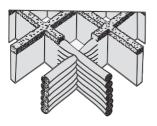
The Aickingrate vinyl ester resin system has a flame spread rating of 25 or less based on the requirements of ASTM E 84 (contact the factory for applications that require a flame spread rating of 10 or less). It is designed to resist the highly corrosive acids and caustics found in the harshest chemical environments. This premium grade resin system is ideal in extremely harsh, wet, caustic conditions and will maintain its structural integrity at elevated temperatures. Aickingrate vinyl ester molded grating is the system to choose in extremely corrosive conditions.

Standard Colors: Orange & Dark Gray Special colors are available upon request.

Special Optional Surfaces

The standard Aickingrate surface is an applied, sealed grit top. The other optional Aickingrate surface is a meniscus surface that also provides optimum skid resistance.

Meniscus


This "concave surface" grating provides excellent slip resistance and is recommended for light traffic applications.

Anti-Skid

This "applied-grit" surface is ideal for high traffic applications that require superior skid resistance.

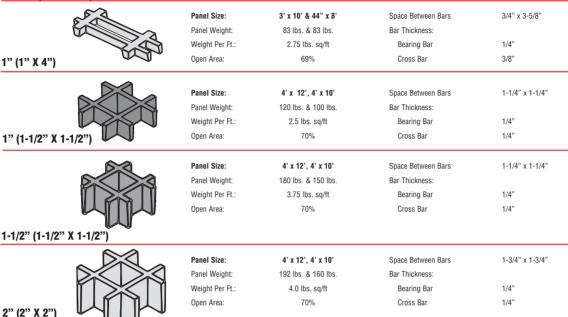
LOADING AND DEFLECTION

The load & deflection data is intended for use only as a guide. The Aickingrate standard panel sizes are 3'x 10' and 4'x 12'. The bearing bars run across the panels making the span 3 or 4 feet. Once the design load and deflection are determined, you can calculate the max-imum allowable span from the tables.

LOADING CONSIDERATIONS

Occasionally, Aickingrate will be subjected to heavy loads from wheeled traffic. For these applications, it is not recommended to use Aickingrate where solid steel or hard rubber wheels can cause sharp impact or chipping of the embedded grit surface.

For the same reason, avoid dropping or sliding heavy loads on Aickingrate.


Load & Deflection Application Data	Concentrated Load	Suggested Deflection
	(lbs.)	(in.)
Occasional Foot Traffic (Inspections, etc.)	250	.250375
Workman with Tools (Maintenance)	300	.250375
Heavy Foot Traffic	400	.250375
Carts/Nonmotorized Vehicles	800	.250375
Motorized Traffic (Light)	1,500	.250375

MOLDED GRATING SPECIFICATIONS

Grating Size

HEIGHT (MESH SIZE)

1. Material

1.1 All molded grating will be fiberglass roving reinforced and constructed from non-fire retardant polyester, fire retardant polyester or vinyl ester resin.

2. Composition

- 2.1 Glass content will be 35% by weight so as to achieve maximum corrosion resistance.
- 2.2 Fire-retardant grating will have a flame spread rating of 25 or less per the requirements of ASTM E 84.
- 2.3 Grating shall comply with all applicable provisions of the following flammability standards:

ASTM D-635 (Rate of Burning)
ASTM E 84 (Surface Burning)
UL 94 VO (Flammability Standard)

2.4 Standard colors shall include the following:

Polyester: Green & Yellow Vinyl ester: Orange & Dark Gray

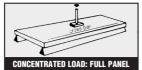
2.5 Special colors are available upon customer request.

3. Structural Design

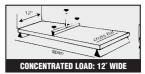
3.1 Grating shall have the following grid patterns:

1" x 4" (1" thick) 1 1/2" x 1 1/2" (1" thick) 1 1/2" x 1 1/2" (1 1/2" thick) 2" x 2" (2" thick)

- 3.2 Grating shall be provided in standard 3' x 10' & 4' x 12' panels.
- 3.3 Specially cut & fabricated grating sections will be available upon customer request.
- 3.4 Open areas will range from 69% to 70% depending on the selected grid pattern.
- 3.5 Standard surface shall be a sealed, applied grit top surface with meniscus surface available upon request.
- 3.6 Load and deflection values shall be as stated in this catalog.
- 3.7 Weights per sq/ft shall be as stated in this catalog.


General

- 4.1 Grating will be inspected prior to shipment and will be free from visual defects such as delaminations, blisters, surface crazing and voids.
- 4.2 Cut grating will be sealed prior to shipment.
- 4.3 Use of grating accessories shall be approved by the manufacturer and installed in accordance with the manufacturers' instructions.
- 4.4 Product substitutions other than Aickingrate must meet or exceed the performance standards set forth in this catalog.
- 4.5 Grating supplied shall be Aickingrate as manufactured by: Aickinstrut/T.J. Cope


Aickinstrut/T.J. Cope 11500 Norcom Road Philadelphia, PA 19154 800-426-4293 (toll free)

MOLDED GRATING

Concentrated Load: Full Panel

	2" THICK – 2" x 2" Mesh														
SPAN		Load (lbs.) / Deflection (in.) LOAD AT SPECIFIC DEF.													
(in.)	100														
18	.004	.012	.025	.037	.049	.074	.098	2040	3063	3672					
24	.007	.018	.036	.054	.072	.107	.143	1860	2793	3352					
36*	.015	.037	.073	.110	.146	.219	.293	1290	1938	2326					
48*	.030	030 .074 .149 .223 .298 .447 858 1286 1554													

	$1\frac{1}{2}$ " THICK – $1\frac{1}{2}$ " x $1\frac{1}{2}$ " Mesh													
SPAN		Load (lbs.) / Deflection (in.) LOAD AT SPECIFIC DEF.												
(in.)	100	250	500	750	1000	1500	2000	1:180 ♦	1:120◊	1:100∆				
18	.007	.016	.032	.048	.064	.096	.128	1560	2340	2808				
24	.012	.029	.058	.086	.115	.173	.230	1156	1733	2080				
36*	.026	.064	.128	.192	.255	.383		738	1108	1330				
48*	.055	.138	.276	.414				463	693	832				
60*	.083	.208	.417					386	579	695				

	1" THICK – 1½" x 1½" Mesh													
SPAN		Load (lbs.) / Deflection (in.) LOAD AT SPECIFIC DEF.												
(in.)	100	250	500	750	1000	1500	2000	1:180 ♦	1:120◊	1:100∆				
18	.014	.034	.068	.102	.136	.203	.271	738	1105	1325				
24	.026	.066	.132	.198	.265	.397		503	755	906				
36*	.068	.171	.342					276	414	497				
48*	.141	.353						181	272	326				

	1" THICK – 1" x 4" Mesh													
SPAN		Load (lbs.) / Deflection (in.) LOAD AT SPECIFIC DEF.												
(in.)	100	250	500	750	1000	1500	2000	1:180 ♦	1:120◊	1:100∆				
18	.011	.028	.056	.084	.113	.169	.225	887	1330	1596				
24	.025	.061	.123	.184	.245	.368	.491	543	813	976				
36*	.059	.147	.294	.441				321	482	578				
44*	.120	.300						213	320	384				

Uniform Load: Full Panel

	2" THICK – 2" x 2" Mesh												
SPAN		Loa	d (lb/ft		LOAD	AT SPECIF	IC DEF.						
(in.)	40	65	75	100	1:180 ♦	1:120◊	1:100∆						
12	.000	.000	.000	.000	.000	.000	.000	4867	5800	5800			
18	.003	.004	.005	.007	.010	.014	.017	1439	2158	2590			
24	.009	.014	.016	.022	.033	.044	.055	607	910	1092			
36*	.044	.072	.083	.111	.167	.222	.278	180	269	323			
48*	.141	.228	.264	.351				76	111	133			
60*	.343							32	46	55			

	1½" THICK – 1½" x 1½" Mesh													
SPAN		Load (lb/ft²) / Deflection (in.) LOAD AT SPECIFIC DEF. 40 65 75 100 150 200 250 1:180 ♦ 1:120◊ 1:120◊ 1:100△												
(in.)	40	40 65 75 100 150 200 250 1:180 ♦ 1:120♦												
12	.002	.003	.004	.005	.008	.010	.013	2664	5918	7102				
18	.005	.008	.010	.013	.019	.025	.032	787	2358	2830				
24	.016	.026	.030	.040	.060	.080	.101	331	745	894				
36*	.081	.132	.153	.204	.305	.407		98	145	174				
48*	.258	.419	.484					41	60	72				

	1" THICK – 1½" x 1½" Mesh													
SPAN		Loa	d (lb/ft	²) / Defl	ection (in.)		LOAD	AT SPECIF	IC DEF.				
(in.)	40	65	75	100	150	200	250	1:180 ♦	1:120◊	1:100∆				
12	.003	.006	.008	.010	.016	.021	.026	633	950	1140				
18	.021	.035	.040	.053	.080	.107	.133	187	281	337				
24	.067	.110	.126	.169	.253	.337	.422	78	118	142				
36	.342							23	35	42				

	1" THICK – 1" x 4" Mesh												
SPAN		Load (lb/ft²) / Deflection (in.) LOAD AT SPECIFIC DEF.											
(in.)	40	60	75	100	150	200	250	1:180 ♦	1:120◊	1:100∆			
12	.002	.004	.005	.006	.009	.012	.014	1158	1737	2084			
18	.010	.016	.018	.024	.036	.048	.060	416	625	750			
24	.022	.036	.042	.056	.084	.112	.140	238	356	427			
36*	.110	.180	.207	.276	.414			72	108	130			
44*	.310							34	50	60			

Concentrated Load: 12" Wide

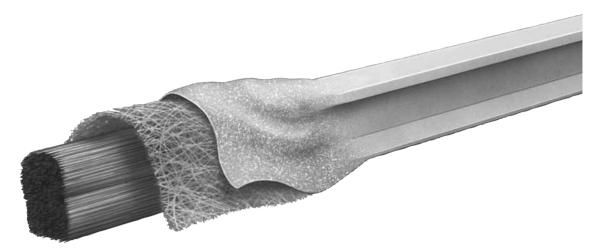
	2" THICK – 2" x 2" Mesh												
SPAN		Lo	ad (lbs.) / Defl		LOAD	AT SPECIF	IC DEF.					
(in.)	100	250	500	750	2000	1:180 ♦	1:120◊	1:100∆					
12	.002												
18	.007	.017	.033	.050	.132	1510	2266	2719					
24	.012	.031	.062	.093	.124	.186	.248	1074	1611	1933			
36*	.037	.093	.186	.279	.372			507	760	912			
48*	.084	.209	.418					306	458	550			
60*	.154	.154 .384 210 315 378											

	1½" THICK – 1½" x 1½" Mesh													
SPAN		Load (lbs.) / Deflection (in.) LOAD AT SPECIFIC DEF.												
(in.)	100	250	500	750	1000	1500	2000	1:180 ♦	1:120◊	1:100∆				
12	.005	.013	.025	.038	.051	.076	.101	1312	1968	2362				
18	.012	.031	.061	.092	.123	.184	.245	815	1221	1465				
24	.027	.068	.136	.204	.272	.408		490	734	881				
36*	.087	.087 .218 .436 . 216 324												
48*	.208							122	184	221				

	1" THICK – 1½" x 1½" Mesh													
SPAN		Load (lbs.) / Deflection (in.) LOAD AT SPECIFIC DEF.												
(in.)	100													
12	.012	.030	.060	.090	.120	.179	.239	557	835	1002				
18	.034	.086	.172	.258	.345			289	434	517				
24	.078	.196	.391					170	254	306				
36*	.265 71 107 128													

			1"1	ГНІС	K – '	1" x	4" N	lesh		
SPAN		Load (lbs.) / Deflection (in.) LOAD AT SPECIFIC DEF.								
(in.)	100	250	500	750	1000	1500	2000	1:180 ♦	1:120◊	1:100∆
12	.009	.023	.046	.069	.092	.137	.183	727	1090	1308
18	.026	.064	.128	.192	.256	.384		390	584	701
24	.059	.147	.294	.440				226	340	408
36*	.198	.495						95	142	170
44*	.359							71	107	129

Deflection to Span Ratios


For a resilient, non-fatiguing, comfortable feel use the standard (std) deflection to span ratio of 1:120. For an elevated installation where a solid feeling is desired, use the solid deflection to span ratio of 1:180. For maximum load requirements, a deflection to span ratio greater than 1:100 (1% def) is not recommended.

- * Clear span is 2" less than width of grating
- ◆ Solid deflection to span ratio is 1:180

- Standard deflection to span ratio is 1:120
- Δ Clear span is 2" less than width of grating

AICKINGRATE® PULTRUDED GRATING

Aickingrate pultruded grating is constructed of pultruded "I" or "T" bars which are available in varying heights (1", 1-1/2" & 2"). Each pultruded bar is connected together with recessed tie bars and covered with an anti-skid, grit top surface to provide sure footing. Each pultruded bar incorporates a synthetic surfacing veil on its exterior. The surfacing veil provides a resin rich surface which allows the grating to withstand hostile environments and inhibit ultraviolet degradation. The standard panel size is 4' x 12'.

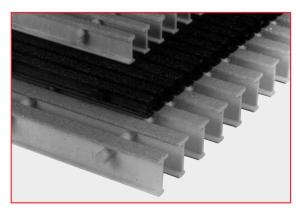
The pultruded grating is available in the following resin systems:

Polyester

This resin system offers a low flame spread rating of 15 or less and is designed for applications where there is moderate exposure to corrosive elements.

Vinyl ester

This resin system offers a low flame spread rating of 15 or less and is designed for prolonged exposure in acidic and alkaline type environments.


Aickingrate pultruded grating is more corrosion resistant than conventional metal grating. The lightweight, maintenance free panels make it less expensive to install than metal grating. The low installation cost combined with the maintenance free life of pultruded grating make its overall life cycle costs lower than that of metal grating.

Aickingrate pultruded grating exceeds the requirements for gratings used in the following applications:

- · Aquariums and Zoos
- Chemical
- Food and Beverage
- · Offshore and Marine
- · Petroleum Processing
- · Plating Facilities
- Pulp and Paper
- · Water and Wastewater

Typical uses for Aickingrate pultruded grating would include:

- Flooring
- Ramps
- Platforms
- Stairs
- Walkways
- Trench Covers
- Catwalks
- Assembly Lines

Pultruded Grating Specifications

Aickingrate Pultruded Specifications

1. MATERIAL

All pultruded grating shall be constructed of glass reinforced, fire retardant polyester resin. Vinyl ester resin is available as a special order.

2. COMPOSITION

All pultruded glass reinforced grating shall have a synthetic veil applied on all exterior surfaces to improve weatherability and inhibit ultraviolet degradation. An ultraviolet stabilizer shall be incorporated in the resin formulation to further inhibit ultraviolet degradation.

Grating will have a flame spread rating of 15 per the requirements ASTM E 84.

Grating shall comply with all applicable provisions of the following flammability standards:

ASTM D-635 (Rate of Burning)
ASTM E 84 (Surface Burning)
UL 94 V0 (Flammability Standard)

2.4 Standard colors shall include the following:

Polyester (I-bar & T-bar): Yellow

Polyester (Wide T-bar): Dark Gray

2.5 Special colors are available upon customer request.

3. STRUCTURAL DESIGN

3.1 Grating shall have the following bar types and heights:

I-bar (1", 1-1/2" & 2" heights)
T-bar (2" height)
Wide T-bar (1" & 1-1/2" heights)

- 3.2 Grating shall be provided in standard 4' x 12' panels.
- 3.3 Specially cut & fabricated grating sections are available upon customer request.

3.4 Standard available "open areas" will be the following:

I-bar (40% & 60%) T-bar (33% & 50%) Wide T-bar (25% & 38%)

- 3.5 Special "open areas" are available upon customer request.
- 3.6 Grating shall be manufactured from thermally cured pultruded structural load and tie bar components.
- 3.7 Grating shall be provided with a recessed tie bar design and grit top surface for maximum skid resistance.
- 3.8 Grating shall be an assembled and bonded notched tie bar system to provide both a mechanical and bonded panel connection.
- 3.9 Load, deflection and panel weight values shall be as stated in this catalog.

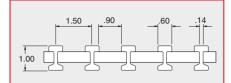
4. GENERAL

- 4.1 Grating will be inspected prior to shipment and will be free from visual defects.
- 4.2 All cut ends will be sealed prior to shipment.
- 4.3 Grating shall be fully supported according to the manufacturer guidelines.
- 4.4 Use of grating accessories shall be approved by the manufacturer and installed in accordance with the manufacturers' instructions.
- 4.5 Product substitutions other than Aickingrate must meet or exceed the performance standards set forth in this catalog.
- 4.6 Grating supplied shall be Aickingrate as manufactured by:

Aickinstrut/T.J. Cope 11500 Norcom Road Philadelphia, PA 19154 800-426-4293 (toll free) 215-961-2570 (phone) 215-961-2580 (fax)

'I' Bar Pultruded Grating

"I" Bar 1" THICK, 60% OPEN AREA


U Uniform Load - Ibs/ft² C Concentrated Line Load - Ibs/ft of Width ΔU Uniform Load deflection (in.) ΔC Concentrated Line Load deflection (in.)

LOAD TYPES

ENGINEERING PROPERTIES PER FT OF WIDTH

A=2.64 in² **I**=0.33 in⁴ **S**=0.63 in³ **Average EI**=1,700,000 lb/in² (Span ≥24")

Average EI=Modulus of Elasticity x Moment of Inertia (avg. value other varying spans)

of Bars/ft. of Width - 8

Load Bar Depth 1" Open Area 60%
Load Bar Centers 1-1/2" Approx. Weight 2.62 lbs./ft²

Clear Span	Load	For S	Required pecified ection	See Note 3		Load a	and Deflection			Max. Recom. Load (Note 1)
(in.)	Type	.250"	.375"	Below						All Resin Systems
	U	-	-	50	75	100	150	200	300	4576
	ΔU	-	-	<.01	<.01	<.01	<.01	<.01	.01	.09
12	С	-	-	50	75	100	150	200	300	4576
	ΔC	-	-	<.01	<.01	<.01	<.01	.01	.01	.14
	U	-	-	50	75	100	150	200	300	3051
	ΔU	-	-	<.01	.01	.01	.01	.02	.02	.25
18	С	-	-	100	200	300	400	500	750	4576
	ΔC	-	-	.01	.02	.03	.03	.04	.07	.40
	U	1059	1589	50	75	100	150	200	300	2288
	ΔU	.25	.375	.01	.02	.02	.04	.05	.07	.54
24	С	1331	1997	100	200	300	400	500	750	3833
	ΔC	.25	.375	.02	.04	.06	.08	.09	.14	.72
	U	458	686	50	75	100	150	200	300	1830
	ΔU	.25	.375	.03	.04	.05	.08	.11	.16	1.00
30	С	716	1075	100	200	300	400	500	750	3067
	ΔC	.25	.375	.03	.07	.10	.14	.17	.26	1.07
	U	241	362	50	75	100	150	200	300	1525
	ΔU	.25	.375	.05	.08	.10	.16	.21	.31	1.58
36	С	453	680	100	200	300	400	500	750	2556
	ΔC	.25	.375	.06	.11	.17	.22	.28	.41	1.41
	U	135	202	50	75	100	150	200	300	1252
	ΔU	.25	.375	.09	.14	.19	.26	.37	.56	2.32
42	С	300	450	100	200	300	400	500	750	2190
	ΔC	.25	.375	.08	.17	.25	.34	.42	.64	1.86
	U	87	131	50	75	100	200	300	400	958
	ΔU	.25	.375	.14	.21	.29	.57	.86	1.15	2.75
48	С	218	327	50	100	200	300	400	500	1917
	ΔC	.25	.375	.06	.11	.23	.34	.46	.57	2.20
	U	50	75	50	75	100	200	300	400	757
	ΔU	.25	.375	25	.38	.51	1.02	1.52	2.03	3.85
54	С	138	208	50	100	200	300	400	500	1704
	$\Delta\Delta$.25	.375	.09	.18	.36	.54	.72	.90	3.08
	U	30	45	50	75	100	125	150	200	613
	ΔU	.25	.375	.42	.63	.84	1.05	1.26	1.68	5.15
60	С	93	140	50	100	200	300	400	500	1533
	ΔC	.25	.375	.13	.27	.54	.81	1.08	1.34	4.12
	U	18	27	50	75	100	125	150	200	507
	ΔÜ	.25	.375	.69	1.04	1.38	1.73	2.08	2.77	7.02
66	С	64	96	50	100	200	300	400	500	1394
	ΔC	.25	.375	.20	.39	.78	1.18	1.57	1.96	5.46
	U	13	19	50	75	100	125	150	200	426
	ΔU	.25	.375	.96	1.45	1.93	2.41	2.89	3.86	8.22
72	С	49	73	50	100	200	300	400	500	1278
	ΔC	.25	.375	.26	.51	1.03	1.54	2.06	2.57	6.58

NOTES:

1. The designer should not exceed the MAX RECOMMENDED LOAD at any given span. MAX RECOMMENDED LOAD represents a 2:1 factor of safety on ULTIMATE CAPACITY.

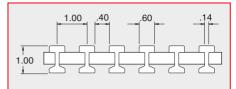
2. Walking loads, typically 50-65 PSF maximum, are recommended for pedestrian traffic. Deflections for worker comfort are typically limited to the lesser of 3/8" or CLEAR SPAN divided by 20. Typical loads are moted in the table to the left of the heavy vertical line at approximately 50 PSF uniform load.

The allowable loads in this bale are for STATIC LOAD CONDITIONS at ambient temperatures only. Allowable loads for impact or ofynamic conditions should be a minimum of ONE-HALF the values shown. Long term

3. The allowable loads in this table are for STATIC LOAD CONDITIONS at ambient temperatures only. Allowable loads for impact or dynamic conditions should be a minimum or UNE-THALF the values shown, Long until result in added deflection due to creep in the material and will also require higher safety factors to ensure acceptable performance. For applications at elevated temperatures, consult factory. The designer is further referenced to ASCE Structural Plastics Design Manual.

"I" Bar 1" THICK, 40% OPEN AREA

U Uniform Load - lbs/ft² C Concentrated Line Load - lbs/ft of Width ΔU Uniform Load deflection (in.) ΔC Concentrated Line Load deflection (in.)


LOAD TYPES

ENGINEERING PROPERTIES PER FT OF WIDTH

A=3.96 in² I=0.50 in⁴ **St**=0.96 in³ **Average EI**=2,500,000 lb/in² (Span ≥24")

A=Cross Sectional Area I=Moment of Inertia S=Section Modulus

Average El=Modulus of Elasticity x Moment of Inertia (avg. value other varying spans)

of Bars/ft. of Width - 12

Load Bar Depth 1" Open Area 40%

Load Bar Centers 1" Approx. Weight 3.41 lbs./ft2

Clear Span (in.)	Load Type	For S	Required pecified ection .375"	See Note 3 Below		Load a	ınd Deflection		Max. Recom. Load (Note 1) All Resin Systems
()	IJ	_	-	50	100	150	200	300	6864
	ΔÜ	_	_	<.01	<.01	<.01	<.01	<.01	.09
12	C	_	_	50	100	150	200	300	6864
	ΔC	_	_	<.01	<.01	<.01	<.01	.01	.14
	U	_	_	50	100	150	200	300	4576
40	ΔÜ	-	_	<.01	.01	.01	.01	.02	.25
18	C ΔC	_	_	50 <.01	100 .01	150	200	300 .02	6864 .40
	ΔC U		2383			.01	.01		.40 2432
	ΔÜ	1589 .25	.375	50 .01	100 .02	150 .02	200 .03	250 .04	.54
24	C	2000	3000	50	100	150	200	300	5750
	ΔČ	.25	.375	.01	.01	.02	.03	.04	.72
	U	686	1030	50	100	150	200	250	2746
	ΔÜ	.25	.375	.02	.04	.05	.07	.09	1.00
30	С	1075	1612	50	100	150	200	300	4600
	ΔC	.25	.375	.01	.02	.03	.05	.07	1.07
	U	362	543	50	100	150	200	250	2288
36	∆U C	.25 958	.375 1438	.02 50	.07 100	.10 150	.14 200	.17 300	1.58 3833
30	ΔC	.25	.375	.02	.04	.06	.07	.11	1.41
	U	200	300	50	100	150	200	250	1878
	ΔÜ	.25	.375	.06	.12	.19	.25	.31	2.32
42	C	442	662	50	100	150	200	300	3286
	ΔC	.25	.375	.03	.06	.08	.11	.17	1.86
	U	131	196	50	100	150	200	250	1438
	ΔU	.25	.375	.10	.19	.29	.38	.48	2.75
48	C	327	491	50	100 .08	150	200 .15	300	2875
	∆C U	.25 74	.375 111	.04 50	.08 100	.11	.15 200	.23 250	2.20 1136
	ΔÜ	.25	.375	.17	.34	150 .51	.68	.85	3.85
54	C	208	312	50	100	150	200	300	2556
0.	ΔČ	.25	.375	.06	.12	.18	.24	.36	3.08
	U	45	67	50	100	150	200	250	920
	ΔÜ	.25	.375	.20	.56	.84	1.12	1.40	5.15
60	C	140	209	50	100	150	200	250	2300
	ΔC	.25	.375	.09	.18	.27	.36	.54	4.12
	U	27	41	50	100	150	200	300	760
66	∆U C	.25 96	.375 144	.46 59	.92 100	1.38 159	1.85 200	2.77 350	7.02 2091
00	ΔC	.25	.375	.13	.26	.39	.52	.91	5.46
	IJ	19	29	59	100	150	200	300	639
	ΔÜ	.25	.375	.64	1.29	1.93	2.57	3.86	8.22
72	C	73	109	50	100	150	200	350	1917
NOTEO	ΔC	.25	.375	.17	.34	.51	.69	1.20	6.58

NOTES

1. The designer should not exceed the MAX RECOMMENDED LOAD at any given span. MAX RECOMMENDED LOAD represents a 2:1 factor of safety on ULTIMATE CAPACITY.

2. Walking loads, typically 50-65 PSF maximum, are recommended for pedestrian traffic. Deflections for worker comfort are typically limited to the lesser of 38° or CLEAR SPAN divided by 125, for a firmer feel, limit

deflection to the lesser of 1/4" or CLEAR SPAN divided by 200. Typical loads are noted in the table to the left of the heavy vertical line at approximately 50 PSF uniform load.

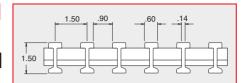
3. The allowable loads in this table are for STATIC LOAD CONDITIONS at ambient temperatures only. Allowable loads for impact or dynamic conditions should be a minimum of ONE-HALF the values shown. Long term

3. The allowable loads in this table are for STATIC LOND CONDITIONS at ambient temperatures only. Allowable loads for impact or dynamic conditions should be a minimum of ONE-HALF the values shown. Long term loads will result in added deflection due to creep in the material and will also require higher safety factors to ensure acceptable performance. For applications at elevated temperatures, consult factory. The designer is further referenced to ASCE Structural Plastics Design Manual.

'I' Bar Pultruded Grating

"I" Bar 11/2" THICK, 60% OPEN AREA

Uniform Load - Ibs/ft2 Concentrated Line Load - Ibs/ft of Width Concentrated Line Load deflection (in.) Uniform Load deflection (in.)


LOAD TYPES

ENGINEERING PROPERTIES PER FT OF WIDTH

A=3.20 in2 I=0.94 in4 St=1.20 in3 Average EI=4,600,000 lb/in2 (Span ≥24")

A=Cross Sectional Area I=Moment of Inertia S=Section Modulus

Average EI=Modulus of Elasticity x Moment of Inertia (avg. value other varying spans)

of Bars/ft. of Width - 8 Load Bar Depth 1-1/2" Open Area 60%

Load Bar Centers 1-1/2" Approx. Weight 2.83 lbs./ft2

Clear Span (in.)	Load Type	For S _l	Required pecified ection .375"	See Note 3 Below		Load a	and Deflection		Max. Recom. Load (Note 1) All Resin Systems
(111.)	IJ	.200	-	100	200	300	400	500	8190
	ΛÜ	_	_	<.01	<.01	<.01	<.01	<.01	.07
12	C	_	_	100	200	300	400	500	8190
	ΔĈ	_	_	<.01	<.01	<.01	.01	.01	.11
	Ü	_	_	50	100	200	300	400	5460
	ΔÜ	_	_	<.01	<.01	.01	.01	.01	.17
18	C	_	_	100	200	300	400	500	8190
	ΔC	_	_	<.01	.01	.01	.01	.02	.28
	U	2925	_	50	100	200	300	400	4095
	ΔÜ	.25	_	<.01	.01	.02	.03	.03	.35
24	C	3676	5515	100	200	300	400	500	6250
	ΔC	.25	.375	.01	.01	.02	.03	.03	.43
	U	1232	1847	50	100	200	300	400	3276
	ΔÜ	.25	.375	.01	.02	.04	.06	.08	.66
30	С	1923	2885	50	100	200	300	400	5000
	ΔC	.25	.375	.01	.01	.03	.04	.05	.65
	U	666	1000	50	100	200	300	400	2730
	ΔU	.25	.375	.02	.04	.08	.11	.15	1.02
36	С	1247	1871	50	100	200	300	400	4167
	ΔC	.25	.375	.01	.02	.04	.06	.08	.83
	U	357	535	50	100	200	300	400	2041
	ΔU	.25	.375	.04	.07	.14	.21	.28	1.43
42	С	780	1170	50	100	200	300	400	3571
	ΔC	.25	.375	.02	.03	.06	.10	.13	1.15
	U	219	329	50	100	200	300	400	1563
	ΔU	.25	.375	.06	.11	.23	.34	.46	1.78
48	C	548	822	50	100	200	300	400	3125
	ΔC	.25	.375	.02	.05	.09	.14	.18	1.43
	U	193	290	50	100	200	300	400	1852
	ΔU	.25	.375	.06	.13	.26	.39	.52	2.40
54	C	363	544	50	100	200	300	400	2778
	ΔC	.25	.375	.03	.07	.14	.21	.28	1.92
	U	81	122	50	100	200	300	400	1000
	ΔU	.25	.375	.15	.31	.62	.93	1.23	3.09
60	C	253	380	50	100	200	300	400	2500
	ΔC	.25	.375	.05	.10	.20	.30	.40	2.47
	U	50	75	50	100	200	300	400	826
00	ΔÜ	.25	.375	.25	.49	.99	1.48	1.97	4.08
66	C	179	268	50	100	200	300	400	2273
	ΔC	.25	.375	.07	.14	.28	.42	.56	3.18
	U	37	55	50	100	200	300	400	694
70	ΔU	.25	.375	.34	.68	1.36	2.03	2.71	4.71
72	C	138	208	50	75	100	250	500	2083
NOTES:	ΔC	.25	.375	.09	.14	.18	.45	.90	3.77

NOTES:

NOLES:

1. The designer should not exceed the MAX RECOMMENDED LOAD at any given span. MAX RECOMMENDED LOAD represents a 2.1 factor of safety on ULTIMATE CAPACITY.

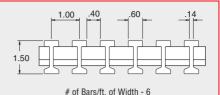
2. Walking loads, typically 50-65 PSF maximum, are recommended for pedestrian traffic. Deflections for worker comfort are typically limited to the lesser of 3/8" or CLEAR SPAN divided by 200. Typical loads are noted in the table to the left of the heavy vertical line at approximately 50 PSF uniform load.

3. The allowable loads in this table are for STATIC LOAD CONDITIONS at ambient temperatures only. Allowable loads for impact or dynamic conditions should be a minimum of ONE-HALF the values shown. Long term

loads will result in added deflection due to creep in the material and will also require higher safety factors to ensure acceptable performance. For applications at elevated temperatures, consult factory. The designer is further referenced to ASCE Structural Plastics Design Manual.

"I" Bar 11/2" THICK, 40% OPEN AREA

U Uniform Load - lbs/ft² C Concentrated Line Load - lbs/ft of Width ΔU Uniform Load deflection (in.) ΔC Concentrated Line Load deflection (in.)


LOAD TYPES

ENGINEERING PROPERTIES PER FT OF WIDTH

A=4.80 in² **I**=1.44 in⁴ **St**=1.80 in³ **Average EI**=7,000,000 lb/in² (Span ≥24")

A=Cross Sectional Area I=Moment of Inertia S=Section Modulus

Average El=Modulus of Elasticity x Moment of Inertia (avg. value other varying spans)

Of Bars/ft. of Width - 6 Load Bar Depth 2" Open Area 50%

Load Bar Centers 2" Approx. Weight3.10 lbs./ft2

Clear Span	Load	For S	Required pecified ection	See Note 3		l nad a	nd Deflection		Max. Recom. Load (Note 1)
(in.)	Type	.250"	.375"	Below		Luau a	illa Dellection		All Resin Systems
	U	_	_	100	200	300	400	500	14,400
	ΔU	-	-	<.01	<.01	<.01	<.01	<.01	.07
12	С	_	-	100	200	300	400	500	12,285
	ΔC	_	_	<.01	<.01	<.01	<.01	<.01	.11
	U	-	-	50	100	200	300	400	8190
4.0	ΔU	_	_	<.01	<.01	<.01	.01	.01	.17
18	C	_	_	100	200	300	400	500	12,285
	ΔC	-	_	<.01	<.01	<.01	.01	.01	.28
	U	4388	_	50	100	200	300	400	6143 .35
24	ΔU	.25 5515	- 8272	<.01	.01 200	.01	.02	.02	.35 9375
24	C ∆C	.25	.375	100 <.01	.01	300 .01	400 .02	500 .02	.43
	U	.23 1847	.373 2771	50	100	200	300	400	.43 4914
	ΔU	.25	.375	.01	.01	.03	.04	.05	.66
30	C	2885	4327	100	200	300	400	500	7500
00	ΔČ	.25	.375	.01	.02	.03	.04	.05	.65
	U	1000	1500	50	100	200	300	400	4095
	ΔÜ	.25	.375	.01	.03	.05	.08	.10	1.02
36	C	1871	2807	100	200	300	400	500	6250
	ΔC	.25	.375	.01	.03	.04	.05	.07	.83
	U	535	803	50	100	200	300	400	3061
	ΔU	.25	.375	.02	.05	.09	.14	.19	1.43
42	С	1170	1754	100	200	300	400	500	5357
	ΔC	.25	.375	.02	.04	.06	.09	.11	1.15
	U	327	491	50	100	200	300	400	2344
	ΔU	.25	.375	.04	.08	.15	.23	.30	1.78
48	C	822	1234	100	200	300	400	500	4688
	ΔC	.25	.375	.03	.06	.09	.12	.15	1.43
	U	193	290	50	100	200	300	400	1852
54	ΔU C	.25 544	.375 816	.06 100	.13 200	.26 300	.39 400	.52 500	2.40 4167
34	ΔC	.25	.375	.05	.09	.14	.18	.23	1.92
	U	122	182	50	100	200	300	400	1500
	ΔU	.25	.375	.10	.21	.41	.62	.82	3.09
60	C	380	569	100	200	300	400	500	3750
	ΔČ	.25	.375	.07	.13	.20	.26	.33	2.47
	U	76	114	50	100	200	300	400	1240
	ΔÜ	.25	.375	.16	.33	.66	.99	1.32	4.08
66	Č	268	403	100	200	300	400	500	3409
	ΔC	.25	.375	.09	.19	.28	.37	.47	3.18
	U	55	83	50	100	200	300	400	1042
	ΔU	.25	.375	.23	.45	.90	1.36	1.81	4.71
72	C	207	311	100	200	300	400	500	3125
	ΔC	.25	.375	.12	.24	.36	.48	.60	3.77

NOTES:

1. The designer should not exceed the MAX RECOMMENDED LOAD at any given span. MAX RECOMMENDED LOAD represents a 2:1 factor of safety on ULTIMATE CAPACITY.

2. Walking loads, typically 50-65 PSF maximum, are recommended for pedestrian traffic. Deflections for worker comfort are typically limited to the lesser of 3/8" or CLEAR SPAN divided by 125; for a firmer feel, limit deflection to the lesser of 1/4" or CLEAR SPAN divided by 200. Typical loads are noted in the table to the left of the heavy vertical line at approximately 50 PSF uniform load.

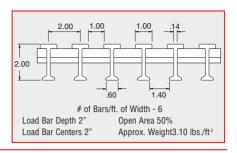
3. The allowable loads in this table are for STATIC LOAD CONDITIONS at ambient temperatures only. Allowable loads for impact or dynamic conditions should be a minimum of ONE-HALF the values shown. Long term loads will result in added deflection due to creep in the material and will also require higher safety factors to ensure acceptable performance. For applications at elevated temperatures, consult factory. The designer is further referenced to ASCE Structural Plastics Design Manual.

'T' Bar Pultruded Grating

Bar 2" THICK, 50% OPEN AREA

Concentrated Line Load - lbs/ft of Width U Unitorm Load - lbs/ft2 $\Delta \mathsf{U}$ Uniform Load deflection (in.) ΛC Concentrated Line Load deflection (in.)

LOAD TYPES


ENGINEERING PROPERTIES PER FT OF WIDTH

A=3.20 in2 I=1.68 in4 St=1.96 in3

Average EI=7,600,000 lb/in2 (Span ≥24")

A=Cross Sectional Area I=Moment of Inertia S=Section Modulus (Top, Bottom)

Average EI=Modulus of Elasticity x Moment of Inertia (avg. value other varying spans)

Clear Span	Load	For Sp	Required pecified ection	See Note 3		Load a	and Deflection			Max. Recom. Load (Note 1)
(in.)	Туре	.250"	.375"	Below						All Resin Systems
	U	-	_	50	100	250	500	750	1000	10,800
10	ΔU	-	_	<.01	<.01	<.01	<.01	<.01	<.01	.06
12	C ΔC	_	_	50 <.01	100 <.01	250 <.01	500 <.01	750 .01	1000 .01	10,800 .10
	U	_	_	50	100	250	500	666	833	7200
	ΔÜ	_	_	<.01	<.01	<.01	.01	.02	.02	.17
18	C	_	_	50	100	250	500	750	1000	10,800
	ΔC	-	_	<.01	<.01	<.01	.01	.02	.03	.27
	U	4737	_	50	100	250	500	666	833	5400
	ΔU	.25	_	<.01	<.01	.01	.03	.04	.04	.29
24	C ∆C	5934 .25	8900 .375	50 <.01	100	250 .01	500 .02	750 .03	1000 .04	10,800 .46
		.25 2000			<.01			.03 500		
	U ΔU	.25	3000 .375	50 <.01	100 .01	250 .03	400 .05	.06	600 .08	4320 .54
30	C	3117	4676	50	100	250	500	750	1000	8667
	ΔČ	.25	.375	<.01	.01	.02	.04	.06	.08	.69
	U	1071	1607	50	100	250	400	500	600	3600
	ΔU	.25	.375	.01	.02	.06	.09	.12	.14	.84
36	C	2000	3000	50	100	250	500	750	1000	7222
	ΔC	.25	.375	.01	.01	.03	.06	.09	.12	.90
	U	553 .25	829 .375	50 .02	100 .05	250 .11	400 .18	500 .23	600 .27	3086 1.40
42	ΔU C	.25 1209	.375 1814	.02 50	.05 100	250	.16 500	.23 750	1000	6190
72	ΔČ	.25	.375	.01	.02	.05	.10	.16	.21	1.28
	Ü	343	514	50	100	250	400	500	600	2700
	ΔÜ	.25	.375	.04	.07	.18	.29	.36	.44	1.97
48	C	857	1286	50	100	250	500	750	1000	5417
	ΔC	.25	.375	.01	.03	.07	.15	.22	.29	1.58
	U	211	316	50	100	250	400	500	600	2140
54	ΔU C	.25 592	.375 887	.06 50	.12 100	.30 250	.47 500	.59 750	.71 1000	2.54 4815
J4	ΔC	.25	.375	.02	.04	.11	.21	.32	.42	2.03
	U	137	206	50	100	250	400	500	600	1733
	ΔÜ	.25	.375	.09	.18	.46	.73	.91	1.09	3.16
60	С	428	642	50	100	250	500	750	1000	4333
	ΔC	.25	.375	.03	.06	.15	.29	.44	.58	2.53
	U	94	140	50	100	250	400	500	600	1433
00	ΔU	.25	.375	.13	.27	.67	1.07	1.34	1.60	3.83
66	C ΔC	328 .25	492 .375	50 .04	100 .08	250 .19	500 .38	750 .57	1000 .76	3939 3.00
	U	.25 71	.373 106	.04 50	100	250	.so 400	.57 500	600	3.00 1204
	ΔU	.25	.375	.18	.35	.88	1.41	1.76	2.11	4.24
72	C	266	399	50	100	250	500	750	1000	3611
. =	ΔĈ	.25	.375	.05	.09	.23	.47	.70	.94	3.39
NOTES:										

NOTES:

1. The designer should not exceed the MAX RECOMMENDED LOAD at any given span. MAX RECOMMENDED LOAD represents a 2:1 factor of safety on ULTIMATE CAPACITY.

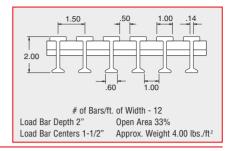
^{1.} The dissigner's should not be deserted in move incommended for pedestrian traffic. Deflections for worder comfort are typically 50-65 PS maximum, are recommended for pedestrian traffic. Deflections for worder comfort are typically limited to the lesser of 3/8" or CLEAR SPAM divided by 20. Typical loads are moted in the table to the left of the heavy vertical line at approximately 50 PS Uniform load.

3. The allowable loads in this table are for STATIC LOAD CONDITIONS at ambient temperatures only. Allowable loads for impact or orynamic conditions should be a minimum of ONE-HALF the values shown. Long term loads will result in added deflection due to creep in the material and will also require higher safety factors to ensure acceptable performance. For applications at elevated temperatures, consult factory. The designer is further referenced to ASCE Structural Plastics Design Manual.

Bar 2" THICK, 33% OPEN AREA

IJ Uniform Load - lbs/ft2 C Concentrated Line Load - lbs/ft of Width Uniform Load deflection (in.) ΛC Concentrated Line Load deflection (in.)

LOAD TYPES


ENGINEERING PROPERTIES PER FT OF WIDTH

A=4.28 in² I=2.24 in⁴ St=2.61 in3 Sb=1.96 in3

Average EI=9,200,000 lb/in2 (Span ≥24")

A=Cross Sectional Area I=Moment of Inertia S=Section Modulus (Top, Bottom)

Average EI=Modulus of Elasticity x Moment of Inertia (avg. value other varying spans)

Clear Span (in.)	Load Type	For S	Required pecified lection .375"	See Note 3 Below		Load a	and Deflection			Max. Recom. Load (Note 1) All Resin Systems
()	U	_	-	50	100	250	500	750	1000	14.400
	ΔÜ	_	_	<.01	<.01	<.01	<.01	<.01	<.01	.06
12	С	-	_	50	100	250	500	750	1000	14,400
	ΔC	-	_	<.01	<.01	<.01	<.01	.01	.01	.10
	U	-	-	50	100	250	500	666	833	9600
	ΔÜ	-	_	<.01	<.01	.01	.01	.01	.01	.17
18	C	-	_	50	100	250	500	750	1000	14,400
	ΔC	-	_	<.01	<.01	<.01	.01	.01	.02	.28
	U	6316 .25	_	50 <.01	100 .01	250 .01	500 .02	666 .03	833 .03	7200 .29
24	ΔU C	.25 7784	11676	<.01 50	100	250	.02 500	.03 750	1000	.29 14.167
24	ΔC	.25	.375	<.01	<.01	.01	.02	.02	.03	.45
	IJ	2667	4000	50	100	250	400	500	600	5760
	ΔÜ	.25	.375	.01	.01	.02	.04	.05	.06	.54
30	C	4167	6250	50	100	250	500	750	1000	11,333
	ΔC	.25	.375	<.01	.01	.02	.03	.05	.06	.68
	U	1429	2143	50	100	250	400	500	600	4800
	ΔU	.25	.375	.01	.02	.04	.07	.09	.11	.84
36	C	2668	4000	50	100	250	500	750	1000	9444
	ΔC	.25	.375	<.01	.01	.02	.05	.07	.09	.88
	U	737	1106	50	100	250	400	500	600	4114
40	ΔÜ	.25	.375	.02	.03	.08	.14	.17	.20	1.39
42	C ∆C	1613 .25	2419 .375	50 .01	100 .02	250 .04	500 .08	750 .12	1000 .16	8095 1.25
	U	458	686	50	100	250	400	500	600	3542
	ΔU	.25	.375	.03	.05	.14	.22	.27	.33	1.94
48	C	1143	1714	50	100	250	500	750	1000	7083
	ΔČ	.25	.375	.01	.02	.05	.11	.16	.22	1.55
	U	281	421	50	100	250	400	500	600	2798
	ΔŪ	.25	.375	.04	.09	.22	.36	.45	.53	2.49
54	С	789	1184	50	100	250	500	750	1000	6296
	ΔC	.25	.375	.02	.03	.08	.16	.24	.32	1.99
	U	183	274	50	100	250	400	500	600	2267
00	ΔÜ	.25	.375	.07	.14	.34	.55	.68	.82	3.10
60	C ΔC	571 .25	857 .375	50 .02	100 .04	250 .11	500 .22	750 .33	1000 .44	5667 2.48
		.25 125	.373 187	.02 50	100	250		.33 500	600	1873
	U ΔU	.25	.375	.10	.20	.50	400 .80	1.00	1.20	3.75
66	C	438	657	50	100	250	500	750	1000	5152
00	ΔČ	.25	.375	.03	.06	.14	.29	.43	.57	2.94
	U	95	142	50	100	250	400	500	600	1574
	ΔŬ	.25	.375	.13	.26	.66	1.06	1.32	1.58	4.16
72	C	355	533	50	100	250	500	750	1000	4722
	ΔC	.25	.375	.04	.07	.18	.35	.53	.70	3.33
NOTES:				•						

- 1. The designer should not exceed the MAX RECOMMENDED LOAD at any given span. MAX RECOMMENDED LOAD represents a 2:1 factor of safety on ULTIMATE CAPACITY.
- 2. Walking loads, typically 50-65 PSF maximum, are recommended for pedestrian traffic. Deflections for worker comfort are typically limited to the lesser of 3/8" or CLEAR SPAN divided by 20. Typical loads are noted in the table to the left of the heavy vertical line at approximately 50 PSF uniform load.

 The allowable loads in this table are for STATIC LOAD CONDITIONS at ambient temperatures only. Allowable loads for impact or dynamic conditions should be a minimum of ONE-HALF the values shown. Long term

loads will result in added deflection due to creep in the material and will also require higher safety factors to ensure acceptable performance. For applications at elevated temperatures, consult factory. The designer is further referenced to ASCE Structural Plastics Design Manual.

Wide 'T' Bar Pultruded Grating

Aickingrate Wide T-Bar pultruded grating provides a lightweight, non-skid, durable alternative to metallic grating used for pedestrian walkway traffic.

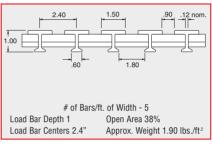
The Aickingrate Wide T-Bar grit-top grating offers excellent protection for pedestrian traffic particularly in wet environments.

This low-cost grating is an excellent alternative to metal grating for wet areas with high volumes of foot traffic.

WIDE "T" Bar 1" THICK, 38% OPEN AREA

Uniform Load - lbs/ft2 C Uniform Load deflection (in.)

Concentrated Line Load - lbs/ft of Width ΔC Concentrated Line Load deflection (in.)


LOAD TYPES

ENGINEERING PROPERTIES PER FT OF WIDTH

A=1.76 in² I=.23 in⁴ S-top=.35 in3 S-bot=.22 in3

Average EI=1,200,000 lb/in2 (Span ≥24")

A=Cross Sectional Area I=Moment of Inertia S=Section Modulus (Top. Bottom) Average EI=Modulus of Elasticity x Moment of Inertia (avg. value other varying spans) Load Required

Clear		For S	Required pecified	See					
Span (in.)	Load Type	.250"	ection .375"	Note 3 Below		Load a	nd Deflection		Max. Recom. Load (Note 1)
	U	_	_	50	75	100	150	200	2730
	ΔU	_	_	<.01	<.01	<.01	<.01	.01	.08
12	С	-	-	50	75	100	150	200	2730
	ΔC	_	_	<.01	<.01	<.01	.01	.01	.12
	U	_	_	50	75	100	150	200	1820
	ΔU	-	-	.01	.01	.01	.02	.02	.22
18	С	_	_	100	200	300	400	500	2587
	ΔC	-	-	.01	.03	.04	.05	.07	.34
	U	742	1113	50	75	100	150	200	1365
	ΔU	.25	.375	.02	.03	.03	.05	.07	.46
24	С	933	1399	100	200	300	400	500	1940
	ΔC	.25	.375	.03	.05	.08	.11	.13	.52
	U	312	468	50	75	100	150	200	1092
	ΔU	.25	.375	.04	.06	.08	.12	.16	.87
30	С	491	737	100	200	300	400	500	1552
	ΔC	.25	.375	.05	.10	.15	.20	.26	.79
	U	154	231	50	75	100	150	200	862
	ΔU	.25	.375	.08	.12	.16	.24	.32	1.40
36	С	290	435	100	200	300	400	500	1293
	ΔC	.25	.375	.09	.17	.26	.34	.43	1.12
	U	84	126	50	75	100	150	200	663
	vU	.25	.375	.15	.22	.30	.45	.60	1.89
42	С	184	276	100	200	300	400	500	1109
	ΔC	.25	.375	.14	.27	.41	.54	.68	1.50
	U	50	75	50	75	100	200	300	485
	ΔU	.25	.375	.25	.38	.50	1.00	1.50	2.43
48	С	125	188	50	100	200	300	400	970
	ΔC	.25	.375	.10	.20	.40	.60	.80	1.94
NOTES:				•					

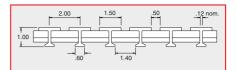
- 1. The designer should not exceed the MAX RECOMMENDED LOAD at any given span. MAX RECOMMENDED LOAD represents a 2:1 factor of safety on ULTIMATE CAPACITY.
 2. Walking loads, typically 50-65 PSF maximum, are recommended for pedestrian traffic. Deflections for worker comfort are typically limited to the lesser of 3/8" or CLEAR SPAN divided by 125; for a firmer feel, limit deflection to the lesser of 1/4" or CLEAR SPAN divided by 200. Typical loads are noted in the table to the left of the heavy vertical line at approximately 50 PSF uniform load.

^{3.} The allowable loads in this table are for STATIC LOAD CONDITIONS at ambient temperatures only. Allowable loads for impact or dynamic conditions should be a minimum of ONE-HALF the values shown. Long term loads will result in added deflection due to creep in the material and will also require higher safety factors to ensure acceptable performance. For applications at elevated temperatures, consult factory. The designer is further referenced to ASCE Structural Plastics Design Manual.

Wide 'T' Bar Pultruded Grating

WIDE "T" Bar 1" THICK, 25% OPEN AREA

C U Uniform Load - Ibs/ft2 Concentrated Line Load - Ibs/ft of Width ΔIJ Uniform Load deflection (in.) ΔC Concentrated Line Load deflection (in.)


LOAD TYPES

ENGINEERING PROPERTIES PER FT OF WIDTH

A=2.11 in2 I=.27 in4 S-top=.42 in³ S-bot=.27 in3

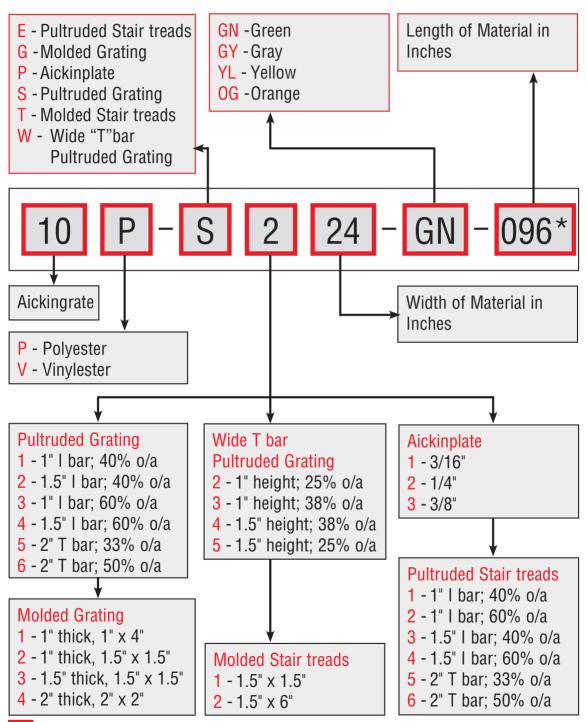
Average EI=1,340,000 lb/in2 (Span ≥24")

A=Cross Sectional Area I=Moment of Inertia S=Section Modulus (Top, Bottom) Average EI=Modulus of Elasticity x Moment of Inertia (avg. value other varying spans)

of Bars/ft. of Width - 6

Load Bar Depth 1" Open Area 25% Load Bar Centers 2" Approx. Weight 2.30 lbs./ft2

Clear Span (in.)	Load Type	For Sp	lequired secified ection .375"	See Note 3 Below	Load and Deflection	on	Max. Recom. Load (Note 1)
()	U	_	_	50	100	200	3276
	ΔÜ	_	_	<.01	<.01	<.01	.08
12	C	-	_	50	100	200	3276
	ΔC	_	-	<.01	<.01	.01	.12
	U	-	_	50	100	200	2184
	ΔÜ	_	_	.01	.01	.02	.22
18	С	-	_	50	100	200	3104
	ΔC	-	-	.01	.01	.02	.34
	U	890	1335	50	75	100	1638
	ΔU	.25	.375	.01	.02	.03	.46
24	С	1119	1679	50	100	200	2328
	ΔC	.25	.375	.01	.02	.04	.52
	U	374	562	50	75	100	1310
	ΔU	.25	.375	.03	.05	.07	.87
30	Č	589	884	100	200	300	1862
	ΔC	.25	.375	.04	.09	.13	.79
	U	185	277	50	75	100	1035
	ΔU	.25	.375	.07	.10	.14	1.40
36	C	348	522	100	200	300	1552
	ΔC	.25	.375	.07	.14	.22	1.12
	U	100	150	50	75	100	760
	ΔU	.25	.375	.12	.19	.25	1.89
42	C	221	332	100	200	300	1330
	ΔC	.25	.375	.11	.23	.34	1.50
	U	60	90	50	75	100	582
40	ΔÜ	.25	.375	.21	.31	.42	2.43
48	C	150	226	50	100	200	1164
NOTES:	ΔC	.25	.375	.08	.17	.33	1.94


1. The designer should not exceed the MAX RECOMMENDED LOAD at any given span. MAX RECOMMENDED LOAD represents a 2:1 factor of safety on ULTIMATE CAPACITY.
2. Walking loads, typically 50-65 PSF maximum, are recommended for pedestrian traffic. Deflections for worker comfort are typically limited to the lesser of 3/8" or CLEAR SPAN divided by 125; for a firmer feel, limit deflection to the lesser of 1/4" or CLEAR SPAN divided by 200. Typical loads are noted in the table to the left of the heavy vertical line at approximately 50 PSF uniform load.

^{3.} The allowable loads in this table are for STATIC LOAD CONDITIONS at ambient temperatures only. Allowable loads for impact or dynamic conditions should be a minimum of ONE-HALF the values shown. Long term loads will result in added deflection due to creep in the material and will also require higher safety factors to ensure acceptable performance. For applications at elevated temperatures, consult factory. The designer is further referenced to ASCE Structural Plastics Design Manual.

AICKINGRATE PART NUMBERS

To order Aickingrate, use the following part number scheme to create the correct part number. *To order non-fire retardant polyester, add suffix "NFR" to end of part number.

Aikengrate Stair Trends are available in either molded or pultruded designs. Both designs incorporate an anti-skid, grit top surface.

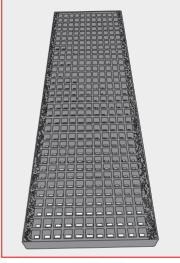
Molded Stair Treads

Molded stair treads are available in the same resin formulations as the standard molded grating panels. Each panel incorporates an applied, grit surface with an extra-thick, dark colored nosing. This leading edge color contrast increases the stair tread visibility and prevents slips and falls on stairways.

All stair treads are 1-1/2" thick and provided in a 1-1/2" square mesh configuration. The standard stair tread panel size is 22-1/2" x 120". Each panel weighs approximately 105 pounds.

Standard Colors: Green, Yellow, Gray and Orange

Special colors are available upon request.


Aickingrate stair tread panels can be cut with the same tools that are used on the Aickingrate molded grating panels.

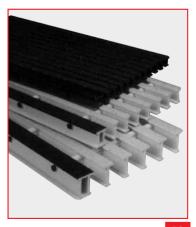
Use fiberglass or steel support angle, or wooden

Two standard hold-down clips bolt to angle support at each end. Use Aickingrate grating clips.

Leading edge Use fiberglass in contrasting or steel color for channel easy visual or wooden identification. stringer.

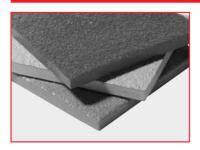
Panel size: Approx. Weight: 105 lbs.

22-1/2" x 120"


Pultruded Stair Treads

Pultruded stair treads incorporate the same performance characteristics as the Aickingrate pultruded grating panels. All stair treads are slip-resistant, non-conductive and offer a high level of safety, strength and corrosion resistance.

Pultruded stair treads are available in either polyester or vinyl ester resin types. The standard stair tread panel size is 1'x 10'. Stair treads are available in 1", 1-1/2" & 2" depths. The available bar shapes are "I" bar and "T" bar. All pultruded stair treads incorporate a color contrast nosing to allow for quick and easy visual distinction, which prevents slips and falls.


Standard Colors: Yellow (Polyester), Gray (Vinyl ester)

	Concentrated	Span (in.)	18	24	30	36	42	48
Tread Type	Load (lbs.)	Span/150	.12	.16	.20	.24	.28	.32
1" Deep, I-Bar	250		.03	.08	.14	.22	.34	.46
60% Open Area	500		.07	.15	.28	.44	.68	.92
1.5" Deep, I-Bar	250		.01	.02	.04	.06	.09	.13
60% Open Area	500		.02	.04	.08	.11	.18	.26
2" Deep, T-Bar	250		.01	.02	.03	.04	.06	.09
50% Open Area	500		.02	.04	.06	.09	.12	.18
1" Deep, I-Bar	250		.02	.05	.10	.16	.24	.33
40% Open Area	500		.05	.11	.20	.32	.49	.65
1.5" Deep, I-Bar	250		.01	.01	.03	.04	.06	.09
40% Open Area	500		.02	.03	.05	.07	.12	.17
2" Deep, T-Bar	250		.01	.01	.02	.03	.05	.07
33% Open Area	500		.02	.03	.04	.06	.09	.14

AICKINPLATE

Aickinplate is a molded, non-skid fiberglass plate that offers an economical, safe solution for slippery walking surfaces. The non-skid surface provides excellent traction even when oil or other slippery liquids are present. Because Aickinplate is molded from fiberglass, it provides superior corrosion resistance and never requires painting. Aikinplate is a structural floor plate that is non-porous and cleans easily with water.

Aickinplate is easy to fabricate. It can be cut with masonry blades and drilled with standard carbide-tipped drill bits. The standard panel size is 4' x 8' and they are available in three thickness'; 3/16", 1/2" and 3/8". All panels will be constructed from both non-fire retardant or fire retardant polyester resin and fire retardant vinyl ester resins. A USDA approved, polyester resin Aickinplate is available.

Some typical Aickinplate applications would be:

- Fishing boat decks
- · Packing plant floors
- Swimming pools
- · Work platforms

Standard Colors: Green, Gray, Yellow, & Orange

Special colors are available upon request.

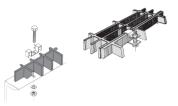
Note: Install clips a maximum of every 48" and use at least 8 clips per 4'x12' panel.

Capacity				
Aickinplate	Panel Weight	45 lbs.	12 (in.)	Use on flat
3/16"	Weight/Sq. Ft.	1.4 lbs.	18	solid surface only
			24	
Aickinplate	Panel Weight	60 lbs.	12 (in.)	199 lbs.
1/4"	Weight/Sq. Ft.	1.8 lbs.	18	98
			24	62
Aickinplate	Panel Weight	85 lbs.	12 (in.)	583 lbs.
3/8"	Weight/Sq. Ft.	2.6 lbs.	18	304
			24	203

Aickincoat Sealer

Aickincoat sealer is recommended after cutting Aickingrate. Aickincoat seals the exposed grating ends and maintains the corrosion resistance and integrity of the grating panel.

Part number	Size
600-1500	Quart
600-1600	Gallon
600-2200	Spray



Grating clips are specially designed to fasten and secure grating panels to support structures. All grating clips are made from 316 Stainless Steel.

Molded Grating Clips

M-Clips

Type M-clips secure panels to a support and restrain panel movement in

all directions. M-Clips can also be installed with self-tapping screws when attaching to metal supports.

Part Aickingrate

numbers	mesh configuration
M-1	1" thick, 1" x 4"
M-2	1" thick, 1-1/2" x 1-1/2"
M-3	1-1/2" thick, 1-1/2" x 1-1/2"
M-4	2" thick, 2" x 2"

C-Clips

Used for joining two unsupported grating panel ends.

Part	Grating
numbers	panel thickness
C-1	1"
C-2	1-1/2"
C-3	2"

Pultruded Grating Clips

Part numbers Grating panel

thickness

MI-4 "I" bar, 40% open area,

1" & 1-1/2" thick

MI-6 "I" bar, 60% open area,

1" & 1-1/2" thick

MT-3 "T" bar, 33% open area,

2" thick

MT-5 "T" bar, 50% open area,

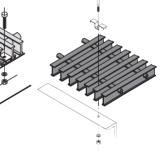
2" thick

MTW-381 Wide "T" bar,

38% open area, 1" thick MTW-3815 Wide "T" bar,

38% open area, 1-1/2" thick

Type M


Type R1

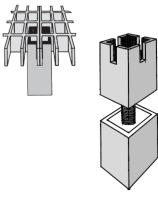
RT-Clips

Part numbers
RT-25

Grating panel thickness

Wide "T" bar, 25% open area, 1
& 1-1/2" thick

Type MI, MT, MTW


MOLDED GRATING Floor Pedestals

Aickingrate floor pedestals are an economic method for providing an elevated Aickingrate molded flooring system. Pedestal supported flooring systems are extremely versatile and can be modified or moved to meet wash-down requirements. Pedestals are designed for a maximum height of 12 inches without braces.

Part numbers Style

P-ADJ Adjustable (5"-12")
P-STA Stationary (3"-12")

Pedestal Placement Table for Aickingrate Molded Grating								
	A 300 lbs. Concentrated		A 300 lbs. Concentrated Load will Produce a					
Aickingrate	Load will Produce a .250" Deflection with	ce a l below						
Mesh	Pedestals Spaced as	with P	with Pedestals Spaced					
Configuration	Indicated Below	4' x 4	3' x 3'	2' x 2'				
1" Thick, 1" x 4"	27" x 27"	(1)	(1)	.200 in.				
1" Thick, 1-1/2" x 1-1/2"	28" x 28"	(1)	(1)	.180 in.				
1-1/2" Thick, 1-1/2" x 1-1/2"	48" x 48"	.250	.140	.065 in.				
2" Thick, 2" x 2"	48" x 72"	.120	.080.	.040 in.				

CORROSION-RESISTANCE GUIDE

The information contained in this table is intended to only be used as a guide for molded & pultruded grating. Because actual conditions may differ, the end-user must determine if the grating will withstand the intended environment.

	% Concentrati		POLY	VE VE	Chemical Environment %		ion Temp. °F	POLY	VE
Acetic Acid	50	Max.	С	С	Hydrochloric Acid (Concentrate	ed) All	Up to 180	N	N
Acetone	100	75	1	N	Hydrocyanic Acid	All	Max.	S	1
Alcohols	100	120	1	- 1	Hydrofluoric Acid	20	75	N	N
Aluminum	All	Max.	С	С	Hydrogen Peroxide	30	75	S	N
Aluminum Chloride	All	Max.	С	С	Lactic Acid	100	Max.	С	С
Aluminum Fluoride	20	75	1	- 1	Lime Slurry	Sat.	Max.	С	С
Ammonium Hydroxide	30	75	I	N	Lithium Salts	All	Max.	С	С
Ammonium Salts - Neutral	All	120	С	S	Magnesium Salts	All	Max.	С	1
Ammonium Salts - Aggressiv	re All	75	T	N	Maleic Acid	100	Max.	S	1
Aromatic Solvents	All	75	N	N	Mercury Chloride	100	Max.	С	С
Barium Salts	All	Max.	С	С	Nickel Salts	All	Max.	С	С
Benzene	100	140	I	N	Nitric Acid	20	120	1	- 1
Black Liquor (Pulp Mill)	All	Max.	I	N	Nitric Acid	35	100	1	N
Bleach Liquor (Pulp Mill)	All	Max.	I	N	Nitric Acid	40	Ambient	N	N
Calcium Hydroxide	25	Max.	S	1	Nitric Hydrofluoric	20:2	75	N	N
Calcium Hypochlorite	All	Max.	I	N	Nitrous Acid	10	75	С	С
Calcium Salts	All	Max.	С	С	Ozone for Sewage Treatment		100	С	С
Carbon Tetrachloride	100	75	S	N	Perchloroethylene	100	75	1	N
Chlorinated Hydrocarbons	100	75	T	T	Phenol	10	75	1	N
Chlorine Dioxide	Sat.	140	S	N	Phenol	88	Ambient	N	N
Chlorine Water	Sat.	120	I	N	Phosphoric Acid	85	Max.	С	S
Chlorine, Wet	Sat.	Max.	N	N	Phosphoric Acid, Super	115	Max.	S	N
Chlorobenzene	100	75	N	N	Potassium Hydroxide	10	120	S	N
Chlorobenzene	All	Up to 100	N	N	Potassium Salts	All	Max.	С	С
Chloroform	100	75	N	N	Silver Nitrate	100	Max.	С	С
Chromic Acid	50	140	I	N	Sodium Cyanide	All	75	S	- 1
Citric Acid	All	Max.	С	С	Sodium Hydroxide	50	Max.	1	N
Copper Cyanide Plating	All	125	S	I	Sodium Hydroxide	10	Max.	N	N
Copper Salts	All	Max.	С	С	Sodium Hypochlorite (Stable)	10	100	S	- 1
Crude Oil (Sweet or Sour)	All	Max.	С	С	Sodium Salts-Neutral	All	Max.	С	С
Dichlorobenzene	100	75	N	N	Sodium Salts-Aggressive	All	75	T	N
Ethers		75	N	N	Sulfur Dioxide	Sat.	Max.	S	S
Ferric Chloride	100	Max.	С	С	Sulfuric Acid	25	Max.	S	1
Ferric Salts	All	Max.	С	С	Sulfuric Acid	50	Max.	S	N
Fluoride Salts + HCI	All	75	I	N	Sulfuric Acid	75	100	1	N
Fluosilicic Acid	10	75	S	I	Toluene	100	120	1	N
Formaldehyde	37	150	S	I	Trichloroethane 1,1,1	All	75	1	N
Formic Acid	25	100	S	I	Trisodium Phosphate	50	Max.	1	N
Fuel (Diesel, Jet, Gasoline)	All	100	С	С	Water (Fresh, Salt, Moderate, D	.l.)100	Max.	С	С
Glycerine	100	Max.	С	С	Wet Chlorine/Hydrochloric Acid) 10-20	Up to 350	N	N
Green Liquor (Pulp Mill)	All	Max.	I	N	White Liquor (Pulp Mill)	All	Max.	S	N
Hydrobromic Acid	48	Max.	I	N	Zinc Chloride Plating	All	75	S	N
Hydrochloric Acid	10	Max.	S	S	Zinc Salts	100	Max.	С	С
Hydrochloric Acid	30	Max.	I	I					

 $[\]hbox{C=} \hbox{Continuous exposure of the grating to the Chemical Environment listed at the temperature listed}.$

S=Frequent exposure of the grating to splashes and spills from the Chemical Environment listed with that environment at the temperature listed.

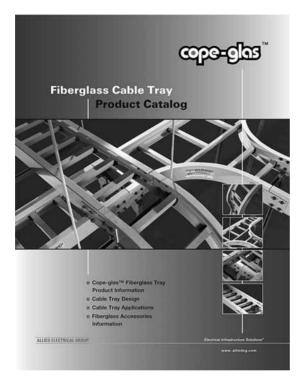
I=Infrequent exposure of the grating to splashes and spills from the Chemical Environment listed with that environment at the temperature listed and the spill immediately cleaned up or washed from the grating.

Consult Aickingrate for corrosion recommendations at concentrations temperatures or che

N=Not recommended for the concentrations and temperatures listed. T=Test $\ensuremath{\mathsf{T}}$

Consult Aickingrate for corrosion recommendations at concentrations, temperatures or chemicals not listed in this guide.

Max. Temp. is 180°F for Vinylester 150°F for Polyester.


Channel Framing	10-15	20P-2820		50PU-2636A	19	390N-BLT	
20E-1000	11	20P-2822	17	50PU-2636B	19	390N-CLP	29
20E-1200		20P-2824	17	50PU-2936		500PU-BC	28
		20P-2826	17	50PU-500SP		RGBC-1	28
20E-1300		20P-2828		AIC-EC		RGBC-2	
20E-2000		20P-2830		A10-L0	13	RGBC-3	
20E-2200				Pipe Clamps	2	паво-э	20
20E-2300	11	20P-2834		r ipo orampo		Pipe Supports	29-31
20P-1000	11	20P-2840		200-3100 thru 200-3210	20		
20P-1100		20PP-5853				20N-ARM08	
OP-1200		20PP-5854	19	NCT-025 thru NCT-100		20N-ARM14	30
20P-1300		20PP-5855	19	NCP-025 thru NCP-100	23	20N-ARM17	30
		20PP-5903		PCR-050 thru PCR-800	21	20N-ARM23	30
20P-1500		20PP-5904		PS050 thru PS1800	21	20N-STA21	
20P-1600		20PP-5905		UB-050 thru UB-600		20N-STA33	
20P-1700	11			05 000 1114 05 000 11111111111		AIC-CH-P (Polyester)	
POP-1800	11	20PU-5853		Fasteners	24-26		
20P-2000	11	20PU-5854		10PU-CN		AIC-CH-V (Vinyl Ester)	
0P-2000-SST	11	20PU-5855				Wall Brackets	3
0P-2100		20PU-5903	19	10PU-CNMHD		Inches and O. Bina Otto	
0P-2100-SST		20PU-5904	19	10PU-CNS		Instrument & Pipe Star	nds 31
		20PU-5905		12PU-CN	26	20PU-5852	3 [.]
0P-2200		50PU-1508		12PU-CNMHD		20PU-5852 RD	
0P-2200-SST		50PU-2008		18PU-CNMHD		20PU-5853 HD	
0P-2300				200-4226 thru 200-4343		20PU-5854 HD	
0P-2300-SST	11	20V-2500		20PU-CNMHD		ZULU-2024 UD	3
0V-1000		20V-2502				Structural Shapes	32-35
0V-1100		20V-2504		250E-999		•	
0V-1200		20V-2506	16	250PU Series Bolts		Channel	32
		20V-2508		250PU-000		Embedment Angle	33
0V-1300		20V-2510		250PU-CN	26	Equal Leg Angle	32
0V-1500		20V-2512		312PU-CN	26	Flat Sheet	
0V-1600	11			375E-999	25	Flat Strip	
OV-1700	11	20V-2514		375PU Series Bolts		Handrail Components	
0V-1800	11	20V-2516		375PU-000			
0V-2000		20V-2518				Handrail Connectors	
0V-2000-SST		20V-2520	17	375PU-CN		I-Beam	
		20V-2522	17	375PU-CNHD		Rectangular Tube	33
0V-2100		20V-2524	17	375PU-FN-000		Round Rod	3
0V-2100-SST		20V-2526		375V Series Bolts	24	Round Tube	34
0V-2200		20V-2528		375V-000	25	Special Shapes	
0V-2200-SST	11			500E-999		Square Bar	
0V-2300	11	20V-2530		500PU Series Bolts			
0V-2300-SST	11	20V-2534		500PU-000		Square Tube	
		20V-2540	18			Wide Flange I-Beam	32
Fittings & Accessories 📑	16-19	20V-2541	18	500PU-CN		Cooleys & Coolings	20.07
0E-5000	19	20V-2800	16	500PU-CNHD		Sealers & Coatings	36-37
DP-2500		20V-2802		500PU-FN-000	25	600-1500, 600-1600	30
		20V-2804		500V-000	25	600-2200	36
DP-2502		20V-2806		625E-999	25		
0P-2504				625PU Series Bolts		Custom & Promo Matl.	36-37
0P-2506	16	20V-2808		625PU-000		AICK-DIST-DISP	3(
DP-2508	16	20V-2810L/R					
)P-2510		20V-2812		625PU-CNHD		AICK-LIT-DISP	
DP-2512		20V-2814	17	625PU-FN-000		AICK-LIT-DISP-CS	
DP-2514		20V-2816L/R		625V-000		AICK-SAMP-CART	
DP-2516		20V-2818		750E-999		AJPSS2	
		20V-2820		750PU-000	25	ARPS2	36
)P-2518		20V-2822		750PU-CNHD			
DP-2520				750PU-FN-000		Aickingrate	38-55
)P-2522	17	20V-2824		750V-000		Aickingrate Part Numbers	51
)P-2524	17	20V-2826		1000E-999		Aickinglate	
P-2526		20V-2828				C-1 thru C-3	
)P-2528		20V-2830	18	1000PU-000			
)P-2530		20V-2834	18	1000PU-FN-000		M-1 thru M-4	
P-2534		20V-2840		1000V-000		MI-4	
		20V-2542		WR375 thru WR750	25	MI-6	
P-2540						Molded Grating	39-4
)P-2542		20V-2541		Pipe Hangers	27-29	Molded Grating Clips	
)P-2541	18	50PU-1508		CVHPU-100 thru CVHPU-600		Molded Grating Floor Pedes	
)P-2800	16	50PU-2008		100-1500 thru 100-1514		Molded Stair Treads	
)P-2802		50PU-2045	19	100-1000 tilld 100-1014			
)P-2804		50PU-2090		Pipe Hanging Accessori	es 28	MT-3	
		50PU-2538				MT-5	
)P-2806		50PU-2538		200-3827 thru 200-3831		MTW-381	
)P-2808				200-3840 thru 200-3843	29	MTW-3815	5/
DP-2810L/R		50PU-2611		20V-2BC-25	28	Pultruded Grating	
DP-2812	17	50PU-2611-SP		20V-2BC-37		Pultruded Grating Clips	
		50PU-2613	18	20V-2BC-50			
	1/						
0P-2814 0P-2816L/R		50PU-2616		375PU-BC		Pultruded Stair Treads	

Other Non-Metallic products designed to work with Aickinstrut® can be found in COPE-GLAS™

Products include:

Straight Sections **Fittings** Clamps **Splice Plates**

Trapeze

Covers

Channel

Plus

Accessories

COPE-GLAS™ is a Fiberglass Cable Tray System of products, UL Listed, accepted industry wide and exceeds industry standards for chemical resistance, strength, flame resistance and ultraviolet protection.

To get a catalog ask your Rep, or go to our website at www.alliedeg.com

ALLIED ELECTRICAL GROUP

Cope® Cable

Tray Systems

Allied Electrical Conduit

Steel Conduit

- Rigid (GRC)
- IMC

Aluminum Conduit

- Riaid
- Aluminum Elbows
- Aluminum Couplings

Steel EMT

- True Color™ EMT
- Fire Alarm™
- Blue EMT
- E-Z Pull® EMT

Kwik Products

- Kwik-Fit™ EMT
 (built-in set-screw coupling)
- Kwik-Couple® IMC/GRC (built-in 3 piece rotating coupling)
- Kwik-Fit Compression® EMT (built-in compression fitting)

PVC

- Rigid PVC
- Schedule 40 & 80 Products
- EB/DB Duct
- Fittings, Spacers, & Accessories

AFC Cable Systems®

AC & MC Cable

- MC TUFF® Lightweight Steel (MC) Cable
- MC TUFF®-IG (MC) Cable with Isolated Ground
- MC Lite® Metal Clad Aluminum (MC) Cable
- HCF-90® & HCF-Lite®
- AC-90[®] & AC-Lite[®]
- Fire Alarm/Control Cable™
- Home Run Cable®
- Parking Deck/Lot Cable™
- Super Neutral Cable®

Flexible Conduit

- LIQUID-TUFF™ Liquid-Tight Flexible Conduit
- Full and Reduced Wall Flexible Metal Conduit

Fittings

- EMT Steel Compression & Set-Screw Fittings
- Liquid-Tight Metallic & Non-Metallic Fittings
- MC/AC Cable Connectors

AFC Accessories

- Lighting, Power, & Appliance Whips
- Temp-Lites®
- · Bare Armored Ground

ACS/Uni-Fab

- Modular Lighting Systems
- · Raised Floor Assemblies
- Pre-Fab Assemblies
- Custom Fabrication

Power-Strut® Framing Systems

Channel

- Steel Channel
- Aluminum Channel
- Stainless Steel Channel
- Fiberglass Channel
- · Junior Strut

Fittings & Accessories

- Strut Brackets
- Strut Fittings
- · Pipe Clamps
- Threaded Rods
- Fiberglass Fittings
- · Junior Strut Fittings
- Concrete Inserts
- Power-Angle[®] Slotted Angles

Finishes

- Pre-Galvanized Channel
- Power-Green® Channel
- Hot-Dip Galv. Channel
- Power-Gold™ Channel

Aluminum Trav

- Aluminum Ladder Trav
- Aluminum Hat Tray
- Aluminum Trof Trav
- Aluminum Channel
- Aluminum Fittings

Steel Tray

- Steel Ladder Tray
- Steel Hat Tray
- Steel Trof Trav
- Steel Channel
- Steel Fittings

Fiberglass Trav

- Cope-glas[™]
 Fiberglass Tray
- Fiberglass Fittings

Wire Basket

- CAT-TRAY™ Wire Basket
- CAT-TRAY™ Accessories

Center Hung Tray

- Centipede® Center Hung Tray
- Centipede® Accessories

Other Cope Products

· Cable Channel

T.J. Cope® Family of Innovative Products

• TJ Cope® Cable Tray Systems 16100 S. Lathrop Avenue Harvey, IL 60426 Tel. 800-688-4857 800-882-5543

Fax 708-339-0615